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Abstract 

The prediction of chronic heart disease (CHD) is a critical area of research in healthcare, where 

early detection can significantly enhance patient outcomes. This study leverages machine learning 

algorithms to predict the likelihood of individuals developing chronic heart disease within the next 

ten years, based on a comprehensive dataset collected via sensors. The dataset includes key 

variables such as gender, age, smoking status, daily cigarette consumption, blood pressure 

medication usage, history of stroke, hypertension, diabetes, cholesterol levels, systolic and 

diastolic blood pressure, body mass index (BMI), heart rate, and glucose levels. Our approach 

involves preprocessing the data to address missing values and normalize continuous variables, 

followed by feature selection to identify the most significant predictors of CHD. Various machine 

learning models, including logistic regression, decision trees, K- Nearest Neighbor and random 

forests, are then trained and validated to assess their predictive performance. The outcome 

variable, Ten Year CHD, indicates whether an individual is likely to develop CHD within a decade. 

The study's findings aim to contribute to the field of preventive cardiology by offering a robust 

predictive model that can aid in the early identification of high-risk individuals, thereby enabling 

timely intervention and reducing the incidence of chronic heart disease. 
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Chapter 1: Introduction 

 

1.1. Predicting Chronic Heart Disease (CHD) Risk Using Machine Learning 

Heart disease is a catch-all phrase for a variety of conditions that affect the heart’s structure 

and how it works. Heart disease is the leading cause of death in the United States. Coronary 

heart disease is a type of heart disease where the arteries of the heart cannot deliver enough 

oxygen-rich blood to the heart. It is also sometimes called coronary artery disease or ischemic 

heart disease. About 20.5 million U.S. adults have coronary artery disease, making it the most 

common type of heart disease in the United States, according to the Centers for Disease 

Control and Prevention [1].  

Chronic Heart Disease (CHD) is a leading cause of mortality globally, and early prediction 

can be crucial in preventing its onset and managing patient outcomes. In this project, we 

utilized machine learning models to predict the likelihood of a person developing CHD within 

the next ten years based on their current health parameters. The goal was to develop a 

predictive model that could assist healthcare professionals in identifying high-risk individuals 

and intervening before the disease progresses. 

 

1.2. Machine learning  

A. What Is Machine Learning? 

Machine Learning (ML) is a branch of artificial intelligence (AI) that focuses on developing 

algorithms and models that enable computers to learn from and make decisions based on data. 

Unlike traditional programming, where a programmer explicitly writes code to perform a 

specific task, machine learning involves training a model using data so that it can automatically 

learn patterns, make predictions, or take actions without being explicitly programmed for each 

individual task. 

Here is a slightly more general definition: 

 

[Machine Learning is the] field of study that gives computers the ability to learn without being 

explicitly programmed. 

—Arthur Samuel, 1959 

 

And a more engineering-oriented one: 

 

A computer program is said to learn from experience E with respect to some task T and some 

performance measure P, if its performance on T, as measured by P, improves with experience 

E. 

—Tom Mitchell, 1997 
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For example, your spam filter is a Machine Learning program that can learn to flag spam given 

examples of spam emails (e.g., flagged by users) and examples of regular (non-spam, also 

called “ham”) emails. The examples that the system uses to learn are called the training set. 

Each training example is called a training instance (or sample). In this case, the task T is to 

flag spam for new emails, the experience E is the training data, and the performance measure 

P needs to be defined; for example, you can use the ratio of correctly classified emails. This 

particular performance measure is called accuracy and it is often used in classification tasks. 

 

B. Why Use Machine Learning? 

When considering the implementation of a spam filter using traditional programming 

techniques, the process typically involves the following steps: 

1) Pattern Identification: Initially, you would analyze spam emails to identify 

common characteristics. For example, you might notice that certain words or 

phrases, such as “4U,” “credit card,” “free,” and “amazing,” frequently appear in 

the subject lines. Additional patterns might be observed in the sender’s name, the 

body of the email, and other elements. 

2) Rule Creation: Based on these observations, you would develop a detection 

algorithm that flags emails containing a certain number of these patterns as spam 

3) Iteration and Testing: The program would then undergo testing and further 

refinement through repeated iterations of steps 1 and 2 until the spam detection is 

sufficiently accurate. 

 

Figure 2-1. The traditional approach [2] 

However, because spam filtering is a complex problem, this traditional approach often results 

in a program with a long and intricate list of rules, making it difficult to maintain. In contrast, 

a spam filter based on Machine Learning (ML) techniques can automatically learn which 

words and phrases are strong predictors of spam by analyzing patterns in spam examples 

compared to non-spam (ham) examples. This results in a shorter, more maintainable, and 

likely more accurate program. 
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Figure 2-2. The machine learning approach [3] 

 

 

Moreover, traditional programming techniques require constant updates to address evolving 

spam tactics. For instance, if spammers change "4U" to "For U," the code must be updated to 

detect the new pattern. In contrast, an ML-based spam filter can automatically detect that "For 

U" has become more common in spam flagged by users and adjust accordingly, without 

requiring manual intervention. 

 

Figure 2-3. Automatically adapting to change [4] 

Machine Learning is also particularly effective for problems that are too complex for 

traditional approaches or lack a known algorithmic solution. For example, in speech 

recognition, trying to distinguish between spoken words like “one” and “two” using 

hardcoded rules based on pitch or sound intensity is impractical. However, an ML algorithm 

can learn from a large dataset of spoken examples, enabling it to generalize across different 

accents, languages, and noisy environments. 



 
4 

 

Additionally, ML algorithms can be inspected to reveal what they have learned. For example, 

after training a spam filter on enough data, it can be examined to identify the words and word 

combinations it considers the best predictors of spam. This process can uncover unexpected 

correlations or trends, leading to a deeper understanding of the problem. When applied to 

large datasets, ML techniques can also facilitate data mining, revealing patterns that might 

not be immediately apparent. 

 

 

Figure 2-4. Machine learning can help humans learn [5] 

 

Summary of Machine Learning Advantages: 

• Simplification of Complex Rules: ML algorithms can often simplify code and 

enhance performance in cases where traditional solutions require extensive hand-

tuning or long lists of rules. 

• Solving Complex Problems: ML can provide solutions for complex problems where 

traditional methods fall short. 

• Adaptability: ML systems can adapt to changing environments and new data, 

ensuring continuous effectiveness. 

• Insight Generation: ML can uncover valuable insights from large and complex 

datasets, aiding in the understanding and resolution of intricate problems. 

C. Types of Machine Learning Systems 

There are so many different types of Machine Learning systems that it is useful to classify 

them in broad categories based on: 

• Whether or not they are trained with human supervision (supervised, unsupervised, 

semisupervised, and Reinforcement Learning) 

• Whether or not they can learn incrementally on the fly (online versus batch learning) 
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• Whether they work by simply comparing new data points to known data points, or 

instead detect patterns in the training data and build a predictive model, much like 

scientists do (instance-based versus model-based learning) 

 

1) Supervised/Unsupervised Learning 

Machine Learning systems can be classified according to the amount and type of 

supervision they get during training. There are four major categories: supervised learning, 

unsupervised learning, semisupervised learning, and Reinforcement Learning. 

 

Supervised learning 

In supervised learning, the training data you feed to the algorithm includes the desired 

solutions, called labels  

 

Figure 2-5. A labeled training set for supervised learning e.g., spam classification [6] 

A typical supervised learning task is classification. The spam filter is a good example of this: 

it is trained with many examples’ emails along with their class (spam or ham), and it must 

learn how to classify new emails. Another typical task is to predict a target numeric value, 

such as the price of a car, given a set of features (mileage, age, brand, etc.) called predictors. 

This sort of task is called regression (Figure 1-6).1 To train the system, you need to give it 

many examples of cars, including both their predictors and their labels (i.e., their prices). 
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Figure 2-6. Regression [7] 

 

 

Note that some regression algorithms can be used for classification as well, and vice versa. 

For example, Logistic Regression is commonly used for classification, as it can output a value 

that corresponds to the probability of belonging to a given class (e.g., 20% chance of being 

spam). 

 

Here are some of the most important supervised learning algorithms which we used I our 

project: 

a. k-Nearest Neighbors 

b. Logistic Regression 

c. Decision Trees  

d. Random Forests 

2) Unsupervised learning 

In unsupervised learning, as you might guess, the training data is unlabeled. The system 

tries to learn without a teacher. 

 

Figure 2-7. An unlabeled training set for supervised learning [8] 
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Here are some of the most important unsupervised learning algorithms  

• Clustering 

o K-Means 

o DBSCAN 

o Hierarchical Cluster Analysis (HCA) 

• Anomaly detection and novelty detection 

o    One-class SVM 

o    Isolation Forest 

• Visualization and dimensionality reduction 

o Principal Component Analysis (PCA) 

o Kernel PCA 

o Locally-Linear Embedding (LLE) 

o t-distributed Stochastic Neighbor Embedding (t-SNE) 

• Association rule learning 

o Apriori 

o Eclat 

 

 

For example, say you have a lot of data about your blog’s visitors. You may want to run a 

clustering algorithm to try to detect groups of similar visitors At no point do you tell the 

algorithm which group a visitor belongs to: it finds those connections without your help. For 

example, it might notice that 40% of your visitors are males who love comic books and 

generally read your blog in the evening, while 20% are young sci-fi lovers who visit during 

the weekends, and so on. If you use a hierarchical clustering algorithm, it may also subdivide 

each group into smaller groups. This may help you target your posts for each group. 

 

 

Figure 2-8. Clustering [9] 

Visualization algorithms are also good examples of unsupervised learning algorithms: you 

feed them a lot of complex and unlabeled data, and they output a 2D or 3D representation of 

your data that can easily be plotted. These algorithms try to preserve as much structure as they 

can (e.g., trying to keep separate clusters in the input space from overlapping in the 

visualization), so you can understand how the data is organized and perhaps identify 

unsuspected patterns. 
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Figure 2-9. Example of a t-SNE visualization highlighting semantic clusters [10] 

 

A related task is dimensionality reduction, in which the goal is to simplify the data without 

losing too much information. One way to do this is to merge several correlated features into 

one. For example, a car’s mileage may be very correlated with its age, so the dimensionality 

reduction algorithm will merge them into one feature that represents the car’s wear and tear. 

This is called feature extraction. 

 

3) Semisupervised learning 

Some algorithms can deal with partially labeled training data, usually a lot of unlabeled data 

and a little bit of labeled data. This is called semisupervised learning. 

Some photo-hosting services, such as Google Photos, are good examples of this. Once you 

upload all your family photos to the service, it automatically recognizes that the same person 

A shows up in photos 1, 5, and 11, while another person B shows up in photos 2, 5, and 7. 

This is the unsupervised part of the algorithm (clustering). Now all the system needs is for 

you to tell it who these people are. Just one label per person,4 and it is able to name everyone 

in every photo, which is useful for searching photos. Most semisupervised learning algorithms 

are combinations of unsupervised and supervised algorithms. 
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Figure 2-10. Semisupervised learning [11] 

 

D. Main Challenges of Machine Learning 

In short, since your main task is to select a learning algorithm and train it on some data, the 

two things that can go wrong are “bad algorithm” and “bad data.” Let’s start with examples 

of bad data. 

 

1) Insufficient Quantity of Training Data 

For a toddler to learn what an apple is, all it takes is for you to point to an apple and say 

“apple” (possibly repeating this procedure a few times). Now the child is able to recognize 

apples in all sorts of colors and shapes. Genius. Machine Learning is not quite there yet; it 

takes a lot of data for most Machine Learning algorithms to work properly. Even for very 

simple problems you typically need thousands of examples, and for complex problems 

such as image or speech recognition you may need millions of examples (unless you can 

reuse parts of an existing model). 

2) Poor-Quality Data 

Obviously, if your training data is full of errors, outliers, and noise (e.g., due to poor-quality 

measurements), it will make it harder for the system to detect the underlying patterns, so 

your system is less likely to perform well. It is often well worth the effort to spend time 

cleaning up your training data. The truth is, most data scientists spend a significant part of 

their time doing just that. For example: 

• If some instances are clearly outliers, it may help to simply discard them or try to fix 

the errors manually. 

• If some instances are missing a few features (e.g., 5% of your customers did not 

specify their age), you must decide whether you want to ignore this attribute 

altogether, ignore these instances, fill in the missing values (e.g., with the median age), 

or train one model with the feature and one model without it, and so on. 

 

3) Irrelevant Features 

 As the saying goes: garbage in, garbage out. Your system will only be capable of learning 

if the training data contains enough relevant features and not too many irrelevant ones. A 
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critical part of the success of a Machine Learning project is coming up with a good set of 

features to train on. This process, called feature engineering, involves: 

• Feature selection: selecting the most useful features to train on among existing 

features. 

• Feature extraction: combining existing features to produce a more useful one (as we 

saw earlier, dimensionality reduction algorithms can help). 

• Creating new features by gathering new data. 

 

4) Overfitting the Training Data 

Say you are visiting a foreign country and the taxi driver rips you off. You might be 

tempted to say that all taxi drivers in that country are thieves. Overgeneralizing is 

something that we humans do all too often, and unfortunately machines can fall into the 

same trap if we are not careful. In Machine Learning this is called overfitting: it means 

that the model performs well on the training data, but it does not generalize well. 

 

5) Underfitting the Training Data 

As you might guess, underfitting is the opposite of overfitting: it occurs when your model 

is too simple to learn the underlying structure of the data. For example, a linear model of 

life satisfaction is prone to underfit; reality is just more complex than the model, so its 

predictions are bound to be inaccurate, even on the training examples. 

The main options to fix this problem are: 

• Selecting a more powerful model, with more parameters 

• Feeding better features to the learning algorithm (feature engineering) 

• Reducing the constraints on the model (e.g., reducing the regularization 

hyperparameter) 

 

E. Testing and Validating 

The only way to know how well a model will generalize to new cases is to actually try it out 

on new cases. One way to do that is to put your model in production and monitor how well it 

performs. This works well, but if your model is horribly bad, your users will complain—not 

the best idea. A better option is to split your data into two sets: the training set and the test 

set. As these names imply, you train your model using the training set, and you test it using 

the test set. The error rate on new cases is called the generalization error (or out-of-sample 

error), and by evaluating your model on the test set, you get an estimate of this error. This 

value tells you how well your model will perform on instances it has never seen before. If the 

training error is low (i.e., your model makes few mistakes on the training set) but the 

generalization error is high, it means that your model is overfitting the training data. 

F. Problem Statement  

The objective of this project was to predict whether an individual would develop Chronic 

Heart Disease (CHD) within the next ten years based on their present health metrics. This task 

was formulated as a binary classification problem, where the model would output a probability 

or a binary prediction (0 or 1) indicating the likelihood of CHD occurrence. 
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G. Objective  

The primary objective of this project is to evaluate and compare the performance of various 

machine learning algorithms in predicting the risk of Chronic Heart Disease (CHD) over a 

ten-year period. By utilizing different models, the goal is to identify the most accurate and 

reliable algorithm for predicting CHD based on the given health parameters. This involves: 

1. Understanding and implementing multiple machine learning algorithms. 

2. Applying these algorithms to the CHD dataset to make predictions. 

3. Evaluating the performance of each model using appropriate metrics such as 

accuracy, precision, recall, and F1 score. 

4. Comparing the results of the models to determine which algorithm performs best in 

predicting CHD risk. 

The insights gained from this comparison will help in selecting the most suitable model for 

CHD risk prediction, which could ultimately contribute to better early detection and 

preventive healthcare. 

H. Supervised Machine Learning 

1) Introduction  

Supervised machine learning is a type of machine learning in which a model is trained on a 

labeled dataset, meaning that the input data is paired with the correct output. The goal of 

supervised learning is to learn a mapping from inputs to outputs that can be used to predict 

the output for new, unseen inputs. This approach is widely used in various applications, 

including classification, regression, and prediction tasks. 

a) Key Concepts 

1. Labeled Data: In supervised learning, the dataset consists of input-output pairs, 

where the input is often referred to as features, and the output as labels. The model 

learns from these pairs to make predictions on new data. 

 

2. Training and Testing: The dataset is typically split into two parts: a training set 

and a testing set. The model is trained on the training set and then evaluated on 

the testing set to assess its performance. This ensures that the model generalizes 

well to new data. 

3. Types of Algorithms: 

• Classification: In classification tasks, the model predicts a discrete label from 

a set of categories. Examples include spam detection in emails and 

handwriting recognition. 

• Regression: Regression involves predicting a continuous value. Common 

applications include predicting house prices based on features like location 

and size  

4. Evaluation Metrics: The performance of supervised learning models is often    

evaluated using metrics such as accuracy, precision, recall, F1-score for 

classification, and mean squared error or R-squared for regression. 
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2) Applications of Supervised Learning 

Supervised learning has numerous applications across various industries: 

a) Healthcare: Predicting the likelihood of diseases such as chronic heart disease based 

on patient data. 

b) Finance: Fraud detection by identifying unusual transactions that deviate from normal 

patterns. 

c) Marketing: Customer segmentation to target specific groups with personalized 

campaigns. 

 

3) Challenges and Considerations 

Despite its widespread use, supervised learning faces several challenges. One major issue 

is the need for large amounts of labeled data, which can be time-consuming and expensive 

to obtain. Additionally, the model's performance can be heavily influenced by the quality 

of the data and the choice of features. 

 

Moreover, there is the risk of overfitting, where the model performs well on the training data 

but poorly on new, unseen data. Techniques such as cross-validation and regularization are 

often used to mitigate this issue. 

 

In conclusion, supervised machine learning is a powerful tool for making predictions and 

decisions based on data. Its effectiveness depends on the quality of the data, the choice of 

model, and the careful tuning of parameters to ensure the model generalizes well to new data. 
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Chapter 2: Literature Review 

 

2.1. HISTORY OF MACHINE LEARNING ALGORITHMS: 

1) Early Beginnings (1950s-1960s): 

• 1950:  Alan Turing, a key figure in computing, suggests a test to check if a machine can 

think like a human. This idea sparks interest in creating intelligent machines. 

• 1957:  Frank Rosenblatt created the Perceptron, an early kind of computer program 

that can learn to make simple decisions by itself, like sorting things into two categories. 

 

2) Growing Interest (1960s-1970s) 

• 1960s: Researchers start using the term "machine learning" and develop early techniques 

to make computers smarter using rules and logic. 

• 1970s: The ID3 algorithm is created, which helps computers make decisions based on a 

series of questions, like a flowchart. 

 

3) Setbacks (1970s-1980s) 

• 1970s-1980s: Interest in AI and machine learning drops because early systems didn’t live 

up to their promises and computing power was still limited. This period is known as the 

"AI Winter." 

 

4) Revival and New Methods (1980s-1990s) 

• 1986: Geoffrey Hinton introduces a method called **backpropagation** that helps 

computers learn more effectively from their mistakes, making it possible to train more 

complex learning systems. 

• 1989: Support Vector Machines (SVMs) are developed. These are powerful tools for 

sorting data into different categories by finding the best line or boundary that separates 

them. 

 

5) Breakthroughs (2000s-2010s) 

• 2006:  Geoffrey Hinton and his team show that deep learning, a method where computers 

learn through multiple layers of processing, can be very effective. This leads to big 

improvements in how machines understand complex data. 

• 2012: AlexNet, a deep learning system, wins a major competition by a large margin, 

proving how powerful these new techniques can be for recognizing images and driving 

wider use of deep learning. 
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6) Recent Developments (2010s-Present) 

• 2014:  Generative Adversarial Networks (GANs) are introduced. These are special 

types of learning systems where two networks compete to create realistic images or data, 

leading to impressive results in generating new content. 

• 2018:  The Transformer model is introduced. This approach revolutionizes how 

machines understand and generate human language, leading to advanced tools like 

chatbots and language translation systems. 

2.2. History of Decision Tree: 

The Decision Tree algorithm is rooted in the fields of statistics and decision theory. Its origins 

trace back to the 1960s and 1970s, with the development of algorithms like CHAID (Chi-

squared Automatic Interaction Detector) and ID3 (Iterative Dichotomiser 3) by Ross Quinlan 

in 1986. ID3 was one of the first algorithms designed to generate a Decision Tree from a 

dataset by iteratively selecting the feature that provided the best split according to Information 

Gain. 

Later developments included Quinlan's C4.5, an improvement over ID3, which could handle 

continuous attributes and missing values. Another significant advancement was the CART 

(Classification and Regression Trees) algorithm introduced by Breiman et al. in 1984, which 

offered a robust framework for both classification and regression tasks. These early 

innovations laid the foundation for modern Decision Trees and ensemble methods like 

Random Forests and Gradient Boosting. 

Decision Trees gained popularity due to their interpretability, as the decisions made at each 

node can be easily understood and visualized, making them particularly useful in fields 

requiring transparent decision-making. 

2.3. History of Logistic Regression Algorithm: 

1) Early Concepts (1950s-1960s) 

• 1950s: The idea of logistic regression starts with the need to predict the likelihood of 

an event occurring. Researchers are looking for ways to model binary outcomes 

(yes/no, success/failure) based on input data. 

 

2) Introduction of Logistic Function (1960s) 

• 1960s: David Cox, a statistician, develops the logistic function. This function is 

important because it can model probabilities (values between 0 and 1) and is used to 

predict outcomes like whether an email is spam or not. 
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3) Formalizing Logistic Regression (1970s-1980s) 

• 1970s: Logistic regression is formally introduced as a statistical technique. It uses the 

logistic function to model the probability of a certain class or event. Researchers use it 

in various fields, like medicine, to predict disease presence based on test results. 

 

4) Growth in Popularity (1990s-2000s) 

• 1990s: Logistic regression becomes popular in various fields like marketing and social 

sciences for its simplicity and effectiveness in predicting binary outcomes. 

• 2000s: With the rise of computers and more data, logistic regression becomes a 

standard tool in data analysis and machine learning due to its interpretability and 

efficiency. 

 

5) Modern Usage (2010s-Present) 

• 2010s: Logistic regression is widely used in machine learning for classification tasks. 

It remains popular because it's straightforward to implement, understand, and interpret. 

• Present: It’s used in various applications, from predicting customer churn to medical 

diagnoses, thanks to its ease of use and effectiveness. 

2.4. History of KNN Algorithm  

1. Early Concepts (1960s-1970s) 

• What Happened: The idea of classifying data based on similarity starts to take shape. 

Early computer scientists and statisticians are exploring ways to make predictions based 

on the idea that similar items should be grouped together. 

2. Introduction of K-Nearest Neighbors (KNN) (1970s) 

• What Happened: The K-Nearest Neighbors (KNN) algorithm is formally introduced. 

It’s a straightforward method where you classify a new data point based on the majority 

class of its nearest neighbors. For example, if you want to classify a new fruit, you look 

at the most similar fruits in your dataset and see which category they belong to. 

3. Early Applications and Growth (1980s-1990s) 

• What Happened: KNN begins to be applied in various fields like pattern recognition and 

data mining. Its simplicity and ease of understanding make it a popular choice for initial 

classification tasks. During this time, researchers start to explore different ways to 

optimize and improve the algorithm. 

4. Integration with Machine Learning (2000s) 

• What Happened: KNN becomes widely used in the machine learning community. With 

the rise of more powerful computers and larger datasets, KNN is used for a variety of 
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applications, including image recognition and recommendation systems. Researchers 

continue to refine the algorithm to handle larger and more complex datasets efficiently. 

5. Modern Usage (2010s-Present) 

• What Happened: KNN remains a popular and useful algorithm in machine learning for 

tasks that involve classification and regression. It’s appreciated for its simplicity and 

effectiveness, especially in situations where the relationship between data points is not 

easily captured by more complex models. Improvements and variations, like weighted 

KNN, are developed to enhance performance. 

2.5. History of Random Forest Algorithm: 

The Random Forest algorithm is a relatively recent development in the field of machine 

learning, but its roots go back to earlier ideas in decision tree learning. 

1. Decision Trees: 

The concept of decision trees, which are the building blocks of Random Forest, was first 

introduced in the 1960s and 1970s. A decision tree is a simple yet powerful tool that makes 

decisions by splitting data into different branches based on certain conditions. Each branch 

represents a possible decision path, leading to a final outcome. While decision trees are easy 

to understand and use, they have a tendency to overfit, meaning they might perform very well 

on training data but poorly on new, unseen data. 

2. Ensemble Learning:  

To overcome the limitations of individual decision trees, researchers began exploring ensemble 

methods in the 1980s and 1990s. Ensemble learning involves combining multiple models to 

improve overall performance. The idea is that a group of models, when combined, can make 

more accurate predictions than any single model on its own. This concept laid the groundwork 

for the development of the Random Forest algorithm. 

3. Birth of Random Forest: 

 The Random Forest algorithm was developed by Leo Breiman, a statistician at the University 

of California, Berkeley, in 2001. Breiman built on the idea of "bagging" (short for bootstrap 

aggregating), which involves training multiple versions of a model on different subsets of the 

data and then averaging their predictions. Random Forest took this idea further by adding 

randomness to the process: each decision tree in the forest is trained on a random subset of the 

data and a random subset of the features. This randomness helps to create a diverse set of trees, 

reducing the risk of overfitting and improving the model's generalization to new data. 

4. Impact and Adoption:  

Since its introduction, Random Forest has become one of the most popular machine learning 

algorithms due to its high accuracy, robustness, and ability to handle large datasets with many 

features. It is widely used in various fields, including healthcare, finance, and marketing, for 
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tasks such as classification, regression, and feature selection. Its ability to provide feature 

importance scores has also made it valuable for understanding which factors are most 

important in making predictions 
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Chapter 3: Methodology 

 

In this section, we detail the machine learning algorithms employed to predict chronic heart 

disease. The models chosen include Logistic Regression, k-Nearest Neighbors (KNN), Random 

Forest, and Decision Tree. These algorithms were selected due to their distinct approaches to 

classification, which allowed us to compare their effectiveness and robustness in handling the 

dataset. 

 

3.1. Decision Tree Classifier for Predicting Coronary Heart Disease (CHD) 

1. Introduction: 

In this project, we utilized a Decision Tree classifier to predict the likelihood of developing 

CHD within the next ten years. The Decision Tree algorithm is a widely used machine 

learning technique, appreciated for its simplicity, transparency, and ability to handle both 

categorical and numerical data. By leveraging this algorithm, we aim to build a model that 

can effectively predict CHD risk based on a variety of health-related features. The dataset 

employed for this project is comprehensive, encompassing a range of health indicators that 

are closely associated with cardiovascular health. These indicators include but are not limited 

to, age, cholesterol levels, blood pressure, and body mass index (BMI), among others. The 

dataset, collected over time, provides a rich source of information that enables the model to 

learn and identify patterns that could signal an increased risk of CHD. This report provides 

a detailed documentation of the entire process involved in implementing and evaluating the 

Decision Tree algorithm for CHD prediction. We begin by introducing the theoretical 

foundation of the Decision Tree model, followed by a thorough explanation of the steps taken 

to preprocess the data, select relevant features, and train the model. The report also presents 

the Python code used in this project, offering insights into how the model was developed and 

tuned for optimal performance. In the latter sections of the report, we analyse the results 

obtained from the model, including key performance metrics such as accuracy, precision, 

recall, and the F1-score. These metrics provide a comprehensive evaluation of the model's 

effectiveness in predicting CHD. We also discuss the strengths and limitations of the 

Decision Tree classifier in this specific context, highlighting areas where the model 

performed well and areas that may require further refinement. 

Through this project, we aim to demonstrate the potential of machine learning, specifically 

the Decision Tree algorithm, in predicting CHD risk. The findings could contribute to the 

broader efforts in the medical community to harness the power of data-driven approaches for 

improving cardiovascular health outcomes. 

2. History and Development of the Decision Tree Algorithm 

The Decision Tree algorithm has a rich history rooted in the fields of statistics, machine 

learning, and decision theory. Its development spans several decades, during which it evolved 
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from a simple concept into a sophisticated tool widely used in various domains for both 

classification and regression tasks. 

1) Early Beginnings: 1960s and 1970 

The concept of decision trees can be traced back to the early 1960s, emerging from the need 

to create models that could simulate human decision-making processes. During this period, 

the field of statistics was heavily focused on finding efficient methods to segment data, 

classify observations, and make predictions. The earliest decision tree models were 

simplistic and primarily used in experimental settings. One of the pioneering algorithms 

from this era was CHAID (Chi-squared Automatic Interaction Detector), developed in the 

late 1960s by Gordon V. Kass. CHAID was designed to automatically select the best 

predictors and their interactions by using chi-square statistics to split the data at each node. 

It was one of the first algorithms to introduce the concept of statistically driven splitting, 

which became a fundamental principle in the development of more advanced decision tree 

algorithms. 

 

2) ID3 and Ross Quinlan’s Contributions: 1980s 

The 1980s marked a significant period in the evolution of decision tree algorithms, primarily 

due to the work of Ross Quinlan, a researcher in machine learning and artificial intelligence. 

In 1986, Quinlan introduced the ID3 (Iterative Dichotomiser 3) algorithm, which became 

one of the first widely recognized methods for constructing decision trees.ID3 was designed 

to create a decision tree from a dataset by iteratively selecting the feature that provided the 

best split according to the concept of Information Gain. Information Gain, derived from the 

entropy of the dataset, measures how well a particular feature separates the data into distinct 

classes. ID3 was innovative because it applied this statistical concept to automatically build 

a decision tree that could classify data with minimal human intervention. However, ID3 had 

some limitations, particularly its inability to handle continuous attributes or missing values 

effectively. These limitations led Quinlan to further develop the algorithm. 

 

3) Advancements: C4.5 and Beyond 

In response to the limitations of ID3, Ross Quinlan introduced an improved version called 

C4.5 in 1993. C4.5 addressed several shortcomings of its predecessor by incorporating the 

ability to handle continuous attributes through the use of thresholds that split data at certain 

points. It also introduced methods to manage missing values, prune the tree to avoid 

overfitting, and apply a post-pruning process to improve the tree's generalizability.C4.5 

quickly became one of the most popular and widely used decision tree algorithms, 

solidifying Quinlan’s place in the history of machine learning. The algorithm's ability to 

handle real-world datasets with varying data types and missing values made it a versatile 

tool in the field. The C4.5 algorithm eventually led to the development of C5.0, a 

commercial version that further improved performance and efficiency, and became the 

foundation for many modern decision tree implementations. 
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4) The Emergence of CART: 1980s 

Another significant milestone in the development of decision trees was the introduction of 

the CART (Classification and Regression Trees) algorithm by Leo Breiman, Jerome 

Friedman, Richard Olshen, and Charles Stone in 1984. Unlike ID3 and C4.5, which were 

primarily focused on classification, CART provided a robust framework for both 

classification and regression tasks. CART introduced the concept of Gini impurity as a 

criterion for splitting nodes, as opposed to the Information Gain used by ID3 and C4.5. Gini 

impurity measures the likelihood of a randomly chosen element being incorrectly classified, 

which made CART particularly effective for certain types of data. Additionally, CART was 

designed to create binary trees, where each internal node had exactly two branches, 

simplifying the tree structure and improving computational efficiency. The introduction of 

CART also brought about the notion of tree pruning to prevent overfitting, a common issue 

where a model becomes too complex and performs poorly on unseen data. Pruning involves 

removing branches of the tree that have little importance, thereby improving the model's 

ability to generalize to new data. 

 

5) Modern Evolution and Ensemble Methods 

The foundational work on decision trees by researchers like Quinlan and Breiman set the 

stage for more advanced machine learning techniques. Decision trees, despite their 

simplicity and interpretability, had limitations, particularly in terms of variance and bias. To 

overcome these limitations, researchers developed ensemble methods, which combine 

multiple decision trees to create more robust models. One of the most notable advancements 

in this area is the Random Forest algorithm, introduced by Leo Breiman in 2001. Random 

Forests build multiple decision trees using different subsets of the data and features, and 

then aggregate their predictions to improve accuracy and reduce overfitting. Another key 

development is Gradient Boosting, which sequentially builds decision trees where each tree 

corrects the errors made by the previous ones. These ensemble methods have significantly 

enhanced the performance and applicability of decision trees in modern machine learning 

tasks. 

 

3. About the Decision Tree Algorithm 

The Decision Tree algorithm is one of the most widely used supervised learning techniques in 

machine learning and data science. It is capable of performing both classification and 

regression tasks, making it a versatile tool for various predictive modelling challenges. The 

structure of a Decision Tree resembles a flowchart, where each internal node represents a 

decision point based on a specific feature, each branch corresponds to the outcome of that 

decision, and each leaf node signifies a final prediction—either a class label in classification 

problems or a continuous value in regression tasks. 
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1) Structure and Functionality 

At its core, a Decision Tree operates by recursively splitting the dataset into subsets based 

on the value of an attribute (feature). This splitting continues until the subsets belong to a 

single class (in classification) or have a homogenous value (in regression). The goal of 

each split is to partition the data in such a way that each resulting subset is as pure as 

possible, meaning that the data points within a subset are as similar as possible in terms of 

the target variable. 

a. Root Node: The root of the tree represents the entire dataset. The first split, made at 

this level, is based on the feature that provides the best separation according to a 

chosen metric, such as Information Gain, Gini impurity, or variance reduction. 

b. Internal Nodes: Each internal node represents a decision point where the data is split 

further based on the value of one of the features. The selection of features at each node 

is crucial for the performance of the tree, as it determines the accuracy and efficiency 

of the model. 

c. Branches: The branches of the tree represent the possible outcomes of the decisions 

made at each node. Each branch leads to another node or to a leaf, depending on 

whether further splitting is required. 

d. Leaf Nodes: The leaves of the tree represent the final output of the model. In a 

classification tree, the leaves correspond to the predicted class labels, while in a 

regression tree, they represent the predicted continuous values. 

 

2) Key Characteristics 

a. Simplicity and Interpretability: One of the most compelling features of Decision 

Trees is their simplicity and ease of interpretation. Unlike many other machine 

learning models, Decision Trees can be visualized graphically, making it 

straightforward to understand the logic behind the predictions. Each path from the 

root to a leaf can be interpreted as a set of conditions leading to a decision, which 

is especially useful in fields that require transparency, such as healthcare and 

finance. 

b. Non-linearity: Decision Trees are capable of capturing complex, non-linear 

relationships between features and the target variable. Unlike linear models that 

assume a straight-line relationship between input features and the target, Decision 

Trees can model intricate patterns by recursively splitting the data based on 

different features at different levels of the tree. 

c. No Assumptions About Data: Decision Trees do not require the data to follow any 

specific distribution. This makes them highly adaptable and suitable for a wide 

variety of datasets, including those with complex or irregular structures. 
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3) Advantages 

a. Decision Trees are easy to interpret and explain, as they provide a clear and visual 

representation of the decision-making process. 

b. They can handle both numerical and categorical data, making them versatile for different 

types of datasets. 

c. They require little data preparation, such as normalization or scaling, allowing for a 

straightforward implementation. 

 

4) Disadvantages 

a. Decision Trees can be prone to overfitting, especially when they grow too complex. 

Overfitting occurs when the model becomes too tailored to the training data, reducing 

its ability to generalize to new, unseen data. 

b. They can be sensitive to small changes in the data, leading to instability in predictions. 

Slight variations in the data can result in a completely different tree being generated.[12] 

 

4.  Mathematical Model 

The Decision Tree algorithm's power lies in its ability to select the optimal features to split 

the data at each node, ensuring that the dataset is partitioned in a way that maximizes the 

model's predictive accuracy. This selection process is grounded in well-established 

mathematical principles that guide the tree-building process. Here, we will explore the key 

concepts involved: Entropy, Information Gain, and Gini Impurity. 

A. Entropy and Information Gain 

Entropy is a fundamental concept in information theory, introduced by Claude Shannon. 

In the context of Decision Trees, entropy is used as a measure of impurity or uncertainty 

in a dataset. It quantifies the level of disorder or randomness in the target variable's 

distribution. The more homogeneous a dataset is, the lower its entropy, and conversely, 

the more mixed the dataset, the higher its entropy. 

a. Mathematically: 

 

Where: 

• (pi) represents the proportion of elements in class (i) relative to the total number 

of elements in the dataset (S). 

• (c) is the number of distinct classes in the dataset. 

• (log2) is the logarithm base 2, which ensures that entropy is measured in bits. 
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For example, if we have a binary classification problem where the dataset is perfectly 

balanced (i.e., 50% of the instances belong to one class and 50% to the other), the entropy 

would be 1, indicating maximum uncertainty. On the other hand, if all instances belong to 

a single class, the entropy would be 0, indicating complete certainty and no disorder. 

b. Information Gain: 

Information Gain (IG) is the metric used to select the best feature for splitting the data at 

each node in a Decision Tree. It measures the reduction in entropy achieved by 

partitioning the dataset based on a particular feature. The feature that results in the highest 

Information Gain is chosen for the split, as it most effectively separates the dataset into 

pure subsets. 

Information Gain is calculated as: 

 

Where: 

- (H(S)) is the entropy of the original dataset (S). 

- (A) is the attribute (feature) used for splitting. 

- (text {Values}(A)) represents the set of all possible values for attribute (A). 

- (S_v) is the subset of (S) where attribute (A) has value (v). 

- (frac{|S_v|} {|S|}) is the proportion of instances in (S) that have the value (v) for attribute 

(A). 

- (H(S_v)) is the entropy of the subset (S_v). 

The attribute with the highest Information Gain is selected because it best reduces the 

uncertainty (entropy) in the dataset, leading to more distinct and pure child nodes. 

 

B. Gini Impurity 

Gini Impurity is another popular criterion used to evaluate the quality of a split in Decision 

Trees. Unlike entropy, which measures disorder in terms of information theory, Gini 

Impurity measures the probability of incorrectly classifying a randomly chosen instance 

if it were randomly labeled according to the distribution of labels in the dataset. Lower 

Gini Impurity values indicate purer nodes. 

The formula for Gini Impurity (G) is: 
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Where: 

• (p_i) is the proportion of elements in class (i) in the dataset (S). 

• (c) is the number of classes. 

For example, in a binary classification problem, if all instances in a node belong to a single 

class, the Gini Impurity would be 0, indicating a pure node. If the instances are evenly 

split between the two classes, the Gini Impurity would be 0.5, indicating maximum 

impurity for a binary classification. 

 Decision-Making Process in a Decision Tree 

At each step in building a Decision Tree, the algorithm evaluates each feature's potential 

splits using one of the criteria mentioned above (Information Gain or Gini Impurity). The 

feature and corresponding split that result in the highest Information Gain (or lowest Gini 

Impurity) are chosen. The dataset is then divided according to this split, and the process 

is repeated recursively for each subset, creating a hierarchical structure of nodes and 

branches. 

This recursive splitting continues until one of the following conditions is met: 

• All instances in a node belong to a single class (pure node). 

• There are no remaining features to split on. 

•  A predefined stopping criterion, such as maximum tree depth or minimum samples 

per node, is satisfied. 

The result is a fully grown Decision Tree, where each path from the root node to a leaf 

node represents a unique decision rule [13]. 

5. How the Decision Tree Algorithm Works 

The Decision Tree algorithm is a popular and powerful method in machine learning, 

particularly valued for its simplicity, interpretability, and ability to handle both categorical 

and continuous data. The process of constructing a Decision Tree can be broken down into 

several key steps, which together define how the algorithm builds a model that can make 

predictions based on input data. Here’s a detailed walkthrough of each step: 

1) Initialization 

The process begins with the entire dataset, which contains a mixture of input features and 

corresponding target labels. At this stage, the algorithm treats the whole dataset as a single, 

undivided entity, often referred to as the root node of the tree. The goal is to split this 

dataset into smaller subsets in a way that maximizes the purity of each subset, meaning 

that each subset should ideally contain instances that belong to the same class. 
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2) Feature Selection 

At each node in the Decision Tree, the algorithm needs to decide which feature to use to 

split the data. This decision is made by evaluating all available features and selecting the 

one that best separates the data into distinct classes.  

To make this selection, the algorithm calculates a metric, such as Information Gain or Gini 

Impurity, for each feature.  

• Information Gain measures how much uncertainty (entropy) is reduced by splitting 

the data based on that feature. The feature with the highest Information Gain is chosen 

because it most effectively reduces the entropy, leading to purer subsets. 

• Gini Impurity is another measure used to evaluate the quality of a split. It quantifies 

the likelihood of incorrect classification if a random instance from the subset was 

labeled randomly according to the class distribution. 

The feature that results in the highest Information Gain (or lowest Gini Impurity) is 

selected for the split. 

3) Splitting 

Once the best feature is selected, the dataset is divided into subsets based on the values of 

this feature. For example, if the chosen feature is "age" and the decision rule is "age > 50," 

the dataset will be split into two branches: one for instances where the condition holds 

true (age > 50) and one where it does not (age ≤ 50).  

Each resulting subset represents a branch of the tree, with the original dataset’s root node 

now leading to these branches. This step reduces the complexity of the data at each node, 

focusing on smaller, more homogeneous subsets. 

4) Recursive Partitioning 

The process of feature selection and splitting is repeated recursively for each branch or 

subset, creating sub-nodes within the tree. At each sub-node, the algorithm again evaluates 

all available features and selects the best one to split the data further. This recursive 

partitioning continues, creating an increasingly complex tree structure with multiple levels 

of nodes. 

The recursive process continues until one of the following stopping criteria is met: 

• Maximum Tree Depth: The tree reaches a predefined maximum number of levels, 

beyond which no further splits are allowed. 

• Minimum Samples per Node: The number of samples in a node falls below a 

predefined threshold, preventing further splits. 

• Pure Node: All samples in a node belong to the same class, meaning no further 

splitting is necessary. These criteria help prevent the tree from growing too complex 

and overfitting the training data. 
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5) Prediction 

Once the Decision Tree is fully grown, it can be used to make predictions on new, unseen 

data. The prediction process involves following the decision rules from the root of the tree 

down to a leaf node.  

For a given new data point, the model starts at the root node and evaluates the feature at 

that node. Depending on the value of the feature, the model follows the corresponding 

branch to the next node. This process continues, moving down the tree, until it reaches a 

leaf node, which contains the predicted class label or value. For instance, if the Decision 

Tree was trained to predict whether a person is at risk of CHD, a new patient’s data would 

be input into the model, and the model would follow the decision rules down the tree until 

it arrives at a leaf node that predicts either "at risk" or "not at risk" based on the patient’s 

health indicators.[14] 

 

3.2. Introduction to K-Nearest Neighbors (KNN) Algorithm 

The K-Nearest Neighbors (KNN) algorithm is a fundamental and versatile machine learning 

technique used for both classification and regression tasks. As one of the simplest yet effective 

algorithms in the field, KNN has found applications in various domains, from image 

recognition to recommendation systems.  

At its core, KNN is based on the principle that similar data points tend to exist in close 

proximity to each other. This intuitive concept is leveraged to make predictions about new, 

unseen data points based on their similarity to known, labeled data points in a dataset. 

The "K" in KNN refers to the number of nearest neighbors that the algorithm considers when 

making a prediction. This parameter is crucial as it directly influences the algorithm's behavior 

and performance. A smaller K value makes the model more sensitive to local patterns but 

potentially more susceptible to noise, while a larger K value can make the model more robust 

but may overlook nuanced patterns in the data. 

One of KNN's distinctive features is its nature as a non-parametric and instance-based learning 

algorithm. Unlike many other machine learning algorithms, KNN doesn't learn a fixed set of 

parameters from the training data. Instead, it memorizes the entire training dataset and uses it 

directly for making predictions. This characteristic makes KNN a "lazy learner," as it defers 

the bulk of its computational effort until the prediction phase rather than during training.[15] 
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A. History of KNN 

The Evolution of K-Nearest Neighbors (KNN): A Comprehensive History 

The K-Nearest Neighbors (KNN) algorithm has a rich and fascinating history that spans over 

six decades, with its roots deeply embedded in statistical estimation and pattern recognition 

theory. From its humble beginnings to its current status as a fundamental algorithm in machine 

learning, KNN has undergone significant transformations, shaped by the contributions of 

numerous researchers and advancements in computational power. In this detailed account, we 

will delve into the key milestones, developments, and breakthroughs that have defined the 

evolution of KNN. 

1) 1951: Fix and Hodges' Non-Parametric Method - The Precursor to KNN 

Eugene Fix and Joseph Hodges introduced a non-parametric method for pattern 

classification, which is considered a precursor to KNN. Their work, titled "Discriminatory 

analysis: Nonparametric discrimination: Consistency properties," laid the foundation for 

the development of KNN. Fix and Hodges' method employed a distance-based approach 

to classify patterns, which would later become a cornerstone of the KNN algorithm. 

2) 1967: Cover and Hart's K-Nearest Neighbor Rule - The Theoretical Foundation 

T. M. Cover and P. E. Hart formally introduced the K-Nearest Neighbor rule in their 

seminal paper "Nearest Neighbor Pattern Classification”. This paper established the 

theoretical foundation for KNN and proved several important properties of the algorithm. 

Cover and Hart demonstrated that the KNN rule is optimal for certain types of distributions, 

and their work set the stage for the widespread adoption of KNN in various fields. 

3) 1970s-1980s: KNN's Growing Popularity - Exploring Applications 

KNN gained popularity as researchers explored its applications in various fields, including 

statistics, data mining, and pattern recognition. Researchers like R. O. Duda and P. E. Hart 

contributed to the growth of KNN during this period. They investigated the use of KNN 

in image recognition, speech recognition, and other areas, further solidifying its position 

as a versatile algorithm. 

4) 1990s-2000s: Computational Advancements - Optimizations and Variations 

With the advent of more powerful computers, KNN became increasingly practical for 

larger datasets. Researchers developed variations and optimizations of the algorithm to 

improve its efficiency and effectiveness [16]. Techniques like k-d trees, ball trees, and 

locality-sensitive hashing were introduced to accelerate KNN computations, enabling its 

application to more complex problems. 

5) Present Day: KNN's Continued Relevance - A Fundamental Algorithm 

KNN remains a fundamental algorithm in machine learning, often used as a benchmark 

for more complex algorithms and as a practical solution for various classification and 

regression tasks. Its simplicity, interpretability, and flexibility make it an attractive choice 
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for many applications. Researchers continue to explore new ways to improve KNN, 

incorporating techniques like kernel methods, ensemble learning, and deep learning. [17] 

B. KNN Classifier Explained 

1) K-Nearest Neighbors (KNN) in Classification 

K-Nearest Neighbors (KNN) is a simple, yet powerful machine learning algorithm used 

for both classification and regression tasks. The algorithm is intuitive, as it classifies a 

data point based on how its neighbors are classified. KNN is particularly useful in 

scenarios where the decision boundary is irregular or not well defined by linear 

methods. 

Historically, KNN has been used in various fields such as handwriting recognition, 

image classification, and even in finance for predicting stock movements. Its simplicity 

lies in its lazy learning approach, where the algorithm doesn’t build an explicit model 

but rather memorizes the training dataset, making predictions only when required. 

2) Working Mechanism of KNN in Classification 

a. Computing KNN Distance Metrics 

The key to the KNN algorithm is determining the distance between the query point 

and the other data points. Determining distance metrics enables decision 

boundaries. These boundaries create different data point regions. There are different 

methods used to calculate distance: 

• Euclidean distance is the most common distance measure, which measures a 

straight line between the query point and the other point being measured. 

• Manhattan distance is also a popular distance measure, which measures the 

absolute value between two points. It is represented on a grid, and often referred 

to as taxicab geometry — how do you travel from point A (your query point) to 

point B (the point being measured) 

• Minkowski distance is a generalization of Euclidean and Manhattan distance 

metrics, which enables the creation of other distance metrics. It is calculated in a 

normed vector space. In the Minkowski distance, p is the parameter that defines 

the type of distance used in the calculation. If p=1, then the Manhattan distance 

is used. If p=2, then the Euclidean distance is used. 

• Hamming distance, also referred to as the overlap metric, is a technique used 

with Boolean or string vectors to identify where vectors do not match. In other 

words, it measures the distance between two strings of equal length. It is 

especially useful for error detection and error correction. 
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b. What is Euclidean Distance? 

• Euclidean Distance is a way to measure how far apart two points are in space. Imagine it 

like drawing a straight line between two points on a graph and then measuring the length 

of that line. 

c. How is it Calculated? 

 
Figure 3-1 

• Formula: The Euclidean Distance between two points A and B is calculated 

using this formula: 

 

d (A, B) = √(x2-x1)
2+(y2-y1)

2 

x1, x2: These are the coordinates (like positions) of the first point A. 

y1, y2: These are the coordinates of the second point B. 

(x1−y1)2, (x2−y2)2: For each coordinate, find the difference between the two points, 

square it (multiply it by itself), and add all these squares together. 

The K-NN working can be explained on the basis of the below algorithm: 

• Step-1: Select the number K of the neighbors 

• Step-2: Calculate the Euclidean distance of K number of neighbors 

• Step-3: Take the K nearest neighbors as per the calculated Euclidean distance. 

• Step-4: Among these k neighbors, count the number of the data points in each category. 

• Step-5: Assign the new data points to that category for which the number of the neighbor 

is maximum. 

Suppose we have a new data point and we need to put it in the required category. Consider the 

below image: 
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Figure 3-2 

• Firstly, we will choose the number of neighbors, so we will choose the k=3. 

• Next, we will calculate the Euclidean distance between the data points. The Euclidean 

distance is the distance between two points, which we have already studied in 

geometry. It can be calculated as: 

 

 
Figure 3-3 

 

By calculating the Euclidean distance, we got the nearest neighbors, as three nearest 

neighbors in category A and two nearest neighbors in category B. Consider the below 

image: 
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Figure 3-4  

o As we can see the 3 nearest neighbors are from category A, hence this new data 

point must belong to category A. 

 

C. Data Preprocessing for KNN Classification 

Data preprocessing is crucial for KNN, as the algorithm is sensitive to the scale of the data, 

missing values, and noise. Effective preprocessing steps include handling missing values, 

managing duplicates, and normalizing features. 

1) Handling Missing Values 

Missing values can significantly affect the performance of KNN. Techniques like KNN 

imputation, where missing values are filled in based on the nearest neighbors, or simpler 

methods like mean, median, or mode imputation, are commonly used. 

2) Managing Duplicates 

Duplicated data points can distort the neighborhood structure in KNN. Removing 

duplicates ensures that the algorithm's predictions are not biased by repeated data points. 

3) Feature Scaling and Normalization 

Feature scaling is vital in KNN because the algorithm relies on distance metrics. 

Unscaled features can dominate the distance calculation, leading to biased results. 

Common scaling methods include Min-Max scaling and Z-score normalization. 

D. Handling Categorical Data in KNN 

KNN requires numerical input for distance calculations. Categorical data should be encoded 

into numerical values using techniques like label encoding to ensure the algorithm performs 

accurately. 
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1) Dealing with Imbalanced Data in KNN Classification 

Imbalanced data is a common challenge in classification tasks. When one class is 

underrepresented, the KNN algorithm might be biased towards the majority class, leading 

to poor performance on the minority class. 

2) Techniques for Handling Imbalanced Classes 

Several techniques can mitigate the issue of imbalanced data. SMOTE (Synthetic Minority 

Over-sampling Technique) is a popular method that generates synthetic samples for the 

minority class by interpolating between existing samples. Other techniques include 

ADASYN, which focuses on generating more samples for harder-to-classify instances, and 

random under-sampling, which balances the class distribution by reducing the size of the 

majority class. 

3) Overfitting and Underfitting in KNN Classification 

Overfitting occurs when the model is too complex and captures noise in the data, while 

underfitting happens when the model is too simple and fails to capture the underlying 

patterns. In KNN, overfitting can occur with a very low 'K' value, and underfitting with a 

very high 'K' value. 

a. Strategies to Prevent Overfitting 

Preventing overfitting in KNN involves selecting an optimal 'K' value, typically 

through cross-validation. Regularization methods, though less common in KNN, can 

also be used. Feature selection and dimensionality reduction techniques like PCA can 

help by reducing the number of features, thereby simplifying the model. 

 

E. Hyperparameter Tuning for KNN Classification 

Finding the optimal 'K' value is crucial for balancing bias and variance in KNN. Cross-

validation is a standard approach to tune 'K'. Grid Search and Random Search are popular 

methods for hyperparameter tuning, allowing the exploration of different 'K' values and other 

parameters like distance metrics. 

1) What is a confusion matrix? 

It is a matrix of size 2×2 for binary classification with actual values on one axis and 

predicted on another. 
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Figure 3-5: Confusion Matrix graph 

Confusion Matrix 

• True Positive (TP) — model correctly predicts the positive class (prediction and 

actual both are positive). In the above example, 10 people who have tumors are 

predicted positively by the model. 

• True Negative (TN) — model correctly predicts the negative class (prediction and 

actual both are negative). In the above example, 60 people who don’t have tumors 

are predicted negatively by the model. 

•  

False Positive (FP) — model gives the wrong prediction of the negative class 

(predicted-positive, actual-negative). In the above example, 22 people are predicted 

as positive of having a tumor, although they don’t have a tumor. FP is also called 

a TYPE I error. 

•  

False Negative (FN) — model wrongly predicts the positive class (predicted-

negative, actual-positive). In the above example, 8 people who have tumors are 

predicted as negative.  

With the help of these four values, we can calculate True Positive Rate (TPR), False 

Negative Rate (FPR), True Negative Rate (TNR), and False Negative Rate (FNR). 
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Even if data is imbalanced, we can figure out that our model is working well or not. For 

that, the values of TPR and TNR should be high, and FPR and FNR should be as low 

as possible. 

With the help of TP, TN, FN, and FP, other performance metrics can be calculated. 

2) Accuracy, Precision, Recall 

Accuracy, precision and recall are crucial for information retrieval, where positive class 

mattered the most as compared to negative.  

While searching something on the web, the model does not care about 

something irrelevant and not retrieved (this is the true negative case). Therefore, only 

TP, FP, FN are used in Precision and Recall. 

1. Accuracy 

Accuracy is used to measure the performance of the model. It is the ratio of Total 

correct instances to the total instances.  

Accuracy=TP+TN+FP+FN/TP+TN 

2. Precision   

Out of all the positive predicted, what percentage is truly positive. 

 
3. Recall  

Out of the total positive, what percentage are predicted positive. It is the same as TPR (true 

positive rate). 

 

F. Challenges and Limitations in KNN Classification 

Despite its simplicity, KNN has several limitations. It can be computationally expensive, 

especially with large datasets, as it requires calculating the distance to every point in the 

training set. KNN is also sensitive to outliers and noisy data, which can lead to incorrect 

classifications. 

The curse of dimensionality is another challenge in KNN. As the number of features increases, 

the distance between points becomes less meaningful, leading to poor performance. 

Dimensionality reduction techniques can alleviate this issue. 
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G. Applications of KNN Classifier 

1) Medical Diagnosis- KNN is frequently used in medical diagnosis, such as predicting 

whether a patient has a certain disease based on symptoms and medical history, as in 

your project on coronary heart disease prediction. 

2) Image Recognition- KNN is applied in image classification tasks, where images are 

classified based on their similarity to other labeled images. 

3) Recommendation Systems- KNN is used in recommendation systems to suggest items 

to users based on the preferences of similar users. 

4) Financial Market Predictions- KNN is used to classify stock market data and predict 

whether the price of a stock will go up or down. 

5) Anomaly Detection- KNN can identify outliers in datasets, which is useful in fraud 

detection and network security. 

 

3.3. Logistic Regression for Predicting Coronary Heart Disease (CHD) 

A. What is Regression? 

Regression [18] is a statistical approach used to analyze the relationship between a 

dependent variable (target variable) and one or more independent variables (predictor 

variables). The objective is to determine the most suitable function that characterizes the 

connection between these variables. 

It seeks to find the best-fitting model, which can be utilized to make predictions or draw 

conclusions [19]. 

• Regression in Machine Learning 

It is a supervised machine learning technique, used to predict the value of the 

dependent variable for new, unseen data. It models the relationship between the input 

features and the target variable, allowing for the estimation or prediction of numerical 

values. 

Regression analysis problem works with if output variable is a real or continuous 

value, such as “salary” or “weight”. Many different models can be used, the simplest 

is the linear regression. It tries to fit data with the best hyper-plane which goes 

through the points [20] 

B. Linear Regression [21] 

Linear regression is a basic predictive analytics technique that uses historical data to predict 

an output variable. It is popular for predictive modeling because it is easily understood and 

can be explained using plain English. 

https://www.geeksforgeeks.org/types-of-regression-techniques/
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The basic idea is that if we can fit a linear regression model to observed data, we can then 

use the model to predict any future values. For example, let us assume that we have found 

from historical data that the price (P) of a house is linearly dependent upon its size (S)—in 

fact, we found that a house’s price is exactly 90 times its size. 

The equation will look like this: P = 90*S 

With this model, we can then predict the cost of any house. If we have a house that is 1,500 

square feet, we can calculate its price to be: P = 90*1500 

= $135,000 

There are two kinds of variables in a linear regression model: 

• The input or predictor variable is the variable(s) that help predict the value of the output 

variable. It is commonly referred to as X. 

• The output variable is the variable that we want to predict. It is commonly referred to as 

Y. 

To estimate Y using linear regression, we assume the equation: Ye = α + β X where Ye is 

the estimated or predicted value of Y based on our linear equation. Our goal is to find 

statistically significant values of the parameters α and β that minimize the difference 

between Y and Ye. If we are able to determine the optimum values of these two parameters, 

then we will have the line of best fit that we can use to predict the values of Y, given the 

value of X. So, how do we estimate α and β? We can use a method called ordinary least 

squares. 

 

Figure 3-6: Linear function graph 
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C. Classification [22] 

Generally, classification is about predicting a label whereas regression is usually used to 

predict a quantity. Classification models approximate a mapping function from inputs to 

produce a class or category. Logistic regression is used instead of linear regression for 

binary classification problems. It produces a value ranging from 0 to 1, which can be 

interpreted as a probability that an event occurred. Decision Trees, Random Forests, and 

Neural Networks can also be used for classification tasks, similar to that in regression. 

Classification is about predicting a label and regression is about predicting a quantity. 

Classification predictive modeling is the task of approximating a mapping function (f) from 

input variables (X) to discrete output variables (y). The output variables are often called 

labels or categories. The mapping function predicts the class or category for a given 

observation. 

For example, an email of text can be classified as belonging to one of two classes: “spam” 

and “not spam.” A classification can have real-valued or discrete input variables. 

Here are different types of classification problem: 

• A problem with two classes is often called a two-class or binary classification 

problem. 

• A problem with more than two classes is often called a multi-class classification 

problem. 

• A problem where an example is assigned multiple classes is called a multi-label 

classification problem. 

It is common for classification models to predict a continuous value as the probability of a 

given example belonging to each output class. The probabilities can be interpreted as the 

likelihood or confidence of a given example belonging to each class. A predicted 

probability can be converted into a class value by selecting the class label that has the 

highest probability. For example, a specific email of text may be assigned the probabilities 

of 0.1 as being “spam” and 0.9 as being “not spam.” We can convert these probabilities to 

a class label by selecting the “not spam” label as it has the highest predicted likelihood. 

There are many ways to estimate the skill of a classification predictive model, but perhaps 

the most common is to calculate the classification accuracy. The classification accuracy is 

the percentage of correctly classified examples out of all predictions made. 

D. Logistic regression  

Logistic regression is often used to predict whether an email is spam or not spam, whether 

a tumor is malignant or benign, or whether a customer will buy a product or not. 

A basic machine learning approach that is frequently used for binary classification tasks 

is called logistic regression. Logistic regression falls under classification rather than 

regression, despite its name. While the term "regression" might suggest that it’s used for 
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predicting continuous values, logistic regression is actually used for predicting discrete 

outcomes, particularly binary outcomes (i.e., two possible classes). It uses the sigmoid 

function to simulate the likelihood of an instance falling into a specific class, producing 

values between 0 and 1. Logistic regression, with its emphasis on interpretability, 

simplicity, and efficient computation, is widely applied in a variety of fields, such as 

marketing, finance, and healthcare, and it offers insightful forecasts and useful 

information for decision making. 

The model estimates the probability that a given input belongs to a particular class, and 

then classifies the input based on that probability (usually by applying a threshold, such 

as 0.5). Thus, logistic regression is a core technique in binary classification tasks. 

 

 

Figure 3-7: Sigmoid function graph 

 

1) History of Logistic Regression 

Logistic regression, a fundamental statistical modeling technique, has played a pivotal role 

in the evolution of various scientific disciplines. Logistic regression has grown from its 

roots in biostatistics to become a versatile and powerful tool in fields such as artificial 

intelligence (AI) and machine learning. The history and development of logistic regression, 



 
39 

 

highlights its journey from early applications in biostatistics to its integration into AI and 

deep learning. 

a. The origins of logistic regression (early 20th century) 

 

1. The Logistic Function 

The foundation of logistic regression lies in the logistic function, a mathematical 

model introduced by Belgian mathematician Pierre François Verhulst in the 1830s. 

Verhulst initially developed the logistic function to model population growth, 

capturing how populations grow rapidly before slowing down as they approach a 

maximum capacity, or carrying capacity. This S-shaped curve, characterized by an 

initial slow start, followed by rapid growth and eventual leveling off, became a critical 

tool in population dynamics. While Verhulst’s work was primarily focused on 

ecology, the mathematical properties of the logistic function soon drew attention from 

statisticians. Its ability to model processes with saturation effects made it valuable for 

studying binary outcomes in various fields, setting the stage for logistic regression as 

a statistical method.  

 

2.    Early Statistical Applications 

In the early 20th century, statisticians began to explore the logistic function’s potential 

in modeling binary classification problems. It was used to model the probability of 

binary outcomes, such as success/failure or yes/no decisions. This marked the 

beginning of logistic regression as a method for analyzing binary data, providing 

valuable insights into the relationship between predictor variables and binary 

outcomes. The recognition that the logistic function could model the probability of an 

event occurring based on predictor variables laid the groundwork for the formal 

development of logistic regression. 

 

b. The formal development of logistic regression (1940s-1950s) 

 

1. Joseph Berkson and the Birth of Logistic Regression 

The formalization of logistic regression is credited to Joseph Berkson, who made 

significant contributions in the mid-20th century. In 1944, Berkson introduced the 

"logit" function, representing the natural logarithm of the odds ratio. The logit 

function established a linear relationship between the log-odds of an event occurring 

and predictor variables, simplifying the estimation of logistic regression model 

parameters. Berkson’s work laid the foundation for logistic regression as a statistical 

method for binary outcomes. He proposed using maximum likelihood estimation 

(MLE) to estimate model parameters, a method that became the standard for fitting 

logistic regression models. His contributions were particularly impactful in 

biostatistics, where logistic regression was first widely applied to study the 
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relationship between smoking and lung cancer, marking one of its first major 

applications in medical research. 

 

2. Early Applications in Biostatistics 

Following Berkson’s pioneering work, logistic regression quickly gained traction in 

biostatistics. Researchers realized its potential for analyzing the relationship 

between risk factors and disease likelihood. One of the earliest significant 

applications was in the Framingham Heart Study, launched in the 1940s to identify 

cardiovascular disease risk factors. Logistic regression was used to model the 

probability of heart disease development based on factors like age, blood pressure, 

cholesterol levels, and smoking. This study revolutionized cardiovascular risk 

understanding and established logistic regression as a powerful tool in medical 

research. 

 

c. Expansion into social sciences (1950s-1960s) 

As logistic regression matured, its applications extended into the social sciences. 

Researchers in sociology, political science, and economics began using it to analyze 

binary outcomes in social phenomena. In the 1950s, sociologists employed logistic 

regression to study voter behavior and political participation, modeling binary 

outcomes like whether an individual would vote. The method was also used to 

examine party affiliation determinants, exploring how factors like socioeconomic 

status, education, and ethnicity influenced political preferences 

 

d. Educational attainment and occupational choices 

Logistic regression also proved valuable in studying educational attainment and 

occupational choices. Social scientists used it to model the probability of achieving 

different education levels based on factors like family background, socioeconomic 

status, and gender. The method also helped analyze factors influencing occupational 

choices, providing insights into social mobility and stratification. For example, 

logistic regression was used to examine the relationship between parental education 

and children's educational outcomes, offering insights into the role of social and 

economic factors in educational attainment. Similarly, it was used to study the factors 

influencing career choices, shedding light on the social and economic determinants 

of occupational mobility. 

 

e. Integration into Artificial Intelligence and Machine Learning (1960s-1990s) 

The mid-20th century marked a transformative period for logistic regression as it 

began to intersect with the emerging fields of artificial intelligence (AI) and machine 

learning. This era not only witnessed the expansion of logistic regression’s 

applications but also its deep integration into foundational AI technologies, which set 

the stage for its critical role in contemporary machine learning. 
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1. The Perceptron and Early Neural Networks 

One of the earliest and most significant links between logistic regression and 

artificial intelligence was established with the development of the perceptron in the 

late 1950s. Frank Rosenblatt, an American psychologist, and computer scientist, 

introduced the perceptron in 1958 as a model inspired by the human brain. The 

perceptron was designed to simulate the way biological neurons process 

information, making it one of the first neural network models. At the core of the 

perceptron was the concept of neurons "firing" based on the weighted sum of inputs 

they received. To determine whether a neuron would fire, Rosenblatt employed an 

activation function—often the logistic function. The logistic function’s S-shaped 

curve was particularly suitable for this purpose because it could map any input 

value to a probability between 0 and 1, effectively determining the likelihood that 

a neuron should activate. This use of the logistic function as an activation 

mechanism in the perceptron was groundbreaking. It illustrated the power of 

logistic regression in binary classification tasks, where the objective was to 

categorize inputs into one of two classes. The perceptron's success in these tasks 

demonstrated that logistic regression could be harnessed within neural networks to 

create more complex AI systems. This early integration was a precursor to the more 

extensive use of logistic regression in later AI and machine learning models, 

bridging the gap between traditional statistical methods and the emerging field of 

artificial intelligence. The perceptron’s influence extended beyond its immediate 

applications. It laid the groundwork for the development of more sophisticated 

neural networks in the decades that followed. Although the initial excitement 

around the perceptron waned due to its limitations—such as its inability to solve 

non-linearly separable problems—its reliance on the logistic function was a key 

step in the evolution of AI. The perceptron set the stage for the future integration 

of logistic regression into a wide array of AI applications, from simple binary 

classifiers to complex, multi-layered neural networks. 

 

2. The Rise of Machine Learning in the 1980s 

The 1980s marked a pivotal decade in the evolution of machine learning, during 

which logistic regression emerged as a leading tool for classification tasks. As 

researchers delved deeper into the mechanics of machine learning, they recognized 

the unique advantages offered by logistic regression, particularly its simplicity, 

interpretability, and effectiveness in binary classification problems. During this 

period, researchers such as Leo Breiman, Jerome Friedman, Charles J. Olshen, and 

Richard A. Stone made significant contributions to the field by integrating logistic 

regression into the framework of classification and regression trees (CART). Their 

work showcased how logistic regression could be combined with other machine 

learning techniques to enhance predictive accuracy and model robustness. By 
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integrating logistic regression into decision tree models, these researchers were able 

to create more versatile and powerful predictive models that could handle a wide 

range of classification tasks. One of the key advantages of logistic regression in the 

machine learning landscape of the 1980s was its ability to provide probabilistic 

predictions. Unlike some other classification models that simply assign a data point 

to a class, logistic regression could output the probability that a given data point 

belonged to a particular class. This feature made logistic regression particularly 

valuable in applications where understanding the likelihood of an outcome was 

crucial, such as in risk assessment, medical diagnosis, and financial forecasting. 

Moreover, the interpretability of logistic regression models made them an attractive 

choice for early machine learning practitioners. Logistic regression's clear and 

understandable results allowed researchers and practitioners to easily interpret the 

outcomes and make informed, data-driven decisions. This transparency was 

especially important in fields such as medicine and finance, where decision-makers 

needed to understand the reasoning behind model predictions. 

 

3. The emergence of statistical learning in the 1990s 

The 1990s witnessed the emergence of statistical learning as a field that seamlessly 

blended the principles of statistics with the methodologies of machine learning. This 

integration brought logistic regression to the forefront as a versatile and powerful 

tool for analyzing complex datasets and predicting binary outcomes. Statistical 

learning frameworks provided a structured approach to modeling and prediction, 

combining the rigorous mathematical foundations of statistics with the 

computational power of machine learning algorithms. Within this context, logistic 

regression played a crucial role, offering a reliable method for modeling 

relationships between predictor variables and binary outcomes. One of the most 

significant applications of logistic regression in statistical learning was in the field 

of medical diagnosis. During the 1990s, researchers began using logistic regression 

to develop models that could predict the likelihood of a patient developing a 

particular disease based on various risk factors. For example, logistic regression was 

employed to analyze data from large-scale epidemiological studies, such as the 

Framingham Heart Study, to predict the probability of heart disease based on factors 

like age, blood pressure, cholesterol levels, and smoking status. These models 

provided valuable insights into the risk factors associated with heart disease and 

helped inform clinical decision-making. In addition to its applications in medicine, 

logistic regression became a popular tool in natural language processing (NLP) 

during the 1990s. Researchers used logistic regression to classify text documents 

into predefined categories, such as spam or non-spam emails, by modeling the 

probability that a given document belonged to a particular category based on its 

features. This application of logistic regression in NLP laid the foundation for the 

development of more advanced text classification techniques, such as support vector 
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machines and neural networks, in the following decades. The integration of logistic 

regression into statistical learning frameworks also facilitated its application in fields 

such as finance, marketing, and social sciences. In finance, for example, logistic 

regression was used to model the probability of default on loans, enabling lenders to 

assess the creditworthiness of borrowers and make informed lending decisions. In 

marketing, logistic regression was employed to predict customer behavior, such as 

the likelihood of making a purchase or responding to a marketing campaign, based 

on demographic and behavioral data. 

Therefore, the success of logistic regression in these diverse applications can be 

attributed to its ability to provide probabilistic predictions and its relatively simple 

model structure. Unlike more complex models, logistic regression offered a 

straightforward interpretation of the relationship between predictor variables and 

binary outcomes, making it an attractive choice for researchers and practitioners who 

needed to balance predictive accuracy with model transparency.[23] [24] [25] 

 

E. How the Logistic Regression Algorithm Works 

Logistic Regression [26] models predict the likelihood that an instance will belong to a 

particular class. It uses a linear equation to combine the input information and the sigmoid 

function to restrict predictions between 0 and 1. These coefficients produce the resulting 

decision boundary, which divides instances into two classes. When it comes to binary 

classification, logistic regression is the best choice because it is easy to understand, 

straightforward, and useful in a variety of settings. Generalization can be improved by 

using regularization. [27] 

 

1. Key Concepts of Logistic Regression 

Important key concepts in logistic regression include: 

• Sigmoid Function: The main function that ensures outputs are between 0 and 1 

by converting a linear combination of input data into probabilities. 

The sigmoid function [28] is denoted as  

σ (z) 

 and is defined as:  

σ (z) =   
1

1+𝑒−𝑧 

 
Where, z is linear combination of input features and coefficients. [29] 

 

2. Logistic Regression Function 

Linear Combination: In logistic regression, the linear combination is used to 

compute a single value from the input features, which is then transformed into a 

probability through the logistic (sigmoid) function. 

https://www.geeksforgeeks.org/understanding-logistic-regression/
https://www.geeksforgeeks.org/derivative-of-the-sigmoid-function/
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Formula:  

z= β0 + β1x1 + β2x2 + ……. + βnxn 

Components Explanation 

1. z (Predicted Value) 

z is the final result or outcome that the model predicts. It is the sum of all the 

influences from the independent variables (x1, x2, …, xn) after they have been 

weighted by their respective coefficients. For example; predicting a person's 

salary, z would represent the estimated salary based on factors like experience, 

education, and hours worked. 

 

2. β0 (Intercept) 

β0 is the intercept value of z when all the independent variables (x1, x2, …, xn) 

are zero (when all the independent variables x1, x2, …, xn are zero means that none of 

these factors contribute anything to the outcome z. In other words, the value of each 

independent variable is zero, meaning they don't add any positive or negative influence 

to z. In this scenario, the outcome z is entirely determined by the intercept β0 . The 

intercept β0 represents the baseline or starting value of z when there is no contribution 

from the independent variables). It’s the starting point or baseline value before 

considering any of the other factors. For example; In the salary prediction 

example, β0 might represent the baseline salary, such as the minimum salary a 

person could expect with no experience, education, or work hours. 

 

3. x1, x2, …, xn (Independent Variables) 

These are the factors or predictors that influence z. Each x1 corresponds to a 

different aspect that affects the outcome. For example; x1 could be years of 

experience, x2 might be education level, and so on. These are the inputs that 

impact the final salary prediction. 

 

4. β1, β2, …, βn (Coefficients/Weights) 

These are the coefficients that measure how much influence each independent 

variable x1 has on the dependent variable z. They tell how strongly each factor 

impacts the outcome. For example, β1 might show how much an additional year 

of experience increases the salary, while β2 might indicate how much higher 

education boosts the salary. Positive coefficients mean the factor increases z, 

while negative coefficients mean it decreases z. 

 

3. Sigmoid function   

The sigmoid function is a mathematical formula that takes any number and 

squashes it in the ranges between 0 and 1. This is useful for making predictions 

where estimations of the probabilities, like whether an email is spam or not takes 

place.  
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Formula: 

𝜎(𝑧)= 
1

 1+𝑒−𝑧 

Components Explanation  

1) The sigmoid function is denoted by the Greek letter ‘σ’. 

2) z:  

• It is the input to the sigmoid function. It can be any real number. The 

value of x determines the output.  

• If the input x to the sigmoid function is a small negative number, the 

output is very close to 0.  

 

lim
𝑥→−∞

𝜎(𝑧) =  lim
𝑥→−∞

 
1

1 +  𝑒−𝑧
 

             = lim
𝑧→−∞

 
1

 1+ 𝑒−∞ 

                                                                = 0 

• For example: 

𝜎(−4)= 
1

 1+𝑒−(−4) 

= 0.01798621 

• If x is a large positive number, then the output is very close to 1. 

 

lim
𝑥→−∞

𝜎(𝑧) =  lim
𝑥→∞

 
1

1 +  𝑒−𝑧
 

= lim
𝑧→∞

 
1

 1+ 𝑒−∞ 

= 1 

 

• For example:  

𝜎(4) = 
1

 1+𝑒−(4) 

= 0.9820138 
3) Numerator (1): 

The numerator of the sigmoid function is simply 1. It acts as a constant and is 

crucial for normalizing the function's output to be between 0 and 1. The 1 ensures 

that the function can provide values in this range regardless of the value of z. 
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4) e-z 

• e-z: This is the base of the natural logarithm, approximately equal to 2.718. It 

is a     fundamental mathematical constant used in exponential growth. 

• z: The exponent in the term e-z. The negation of z means that as z increases,  

e-z decreases exponentially, and as z decreases, e-z increases exponentially. 

• e-z: This term represents an exponential decay function. It determines how 

rapidly the value decreases as z increases and how it grows as z decreases. This 

exponential term ensures the smooth, S-shaped curve of the sigmoid function. 

 

F. Real life examples 

Logistic regression is widely used in various real-life scenarios, particularly when the goal is 

to predict a binary outcome (yes/no, true/false, 0/1). Here are some examples: 

 1. Medical Diagnosis 

1) Disease Prediction: Logistic regression is used to predict whether a patient has a 

particular disease (e.g., diabetes, heart disease) based on various factors like age, blood 

pressure, and cholesterol levels. 

2) Cancer Detection: It can help predict the presence of cancerous cells based on imaging 

data or genetic markers. 

 2. Marketing 

1) Customer Churn Prediction: Companies use logistic regression to predict whether a 

customer is likely to stop using their service based on their interaction history, purchase 

behavior, and customer support interactions. 

2) Email Campaign Effectiveness: Predict whether a customer will click on a link in an 

email or make a purchase after receiving a marketing email. 

 3. Finance 

1) Credit Scoring: Logistic regression models are used to assess the probability that a 

borrower will default on a loan. Factors like income, credit history, and debt to income 

ratio are often used as predictors. 

2) Fraud Detection: It helps in identifying potentially fraudulent transactions based on 

patterns in transaction data. 

 4. Human Resources 

1) Employee Attrition: HR departments use logistic regression to predict whether an 

employee is likely to leave the company. Factors could include job satisfaction, salary, 

and work life balance. 

2) Recruitment: Predicting whether a job applicant will accept an offer based on their 

application details and interview performance. 
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 5. Healthcare 

1) Hospital Readmission: Predicting the likelihood of a patient being readmitted to the 

hospital within a certain time frame after discharge, based on their medical history, 

treatment, and demographics. 

2) Birth Outcomes: Logistic regression is used to predict the likelihood of complications 

during birth based on prenatal factors 

6. Ecommerce 

1) Purchase Prediction: Online retailers use logistic regression to predict whether a customer 

will make a purchase based on their browsing history, cart status, and demographic 

information. 

2) Customer Segmentation: Classifying customers into different segments (e.g., highvalue, 

atrisk) based on their purchase history and engagement level. 

 7. Education 

1) Student Performance: Predicting whether a student will pass or fail a course based on 

their attendance, assignment scores, and participation in class. 

2) Dropout Prediction: Identifying students at risk of dropping out of a course or program, 

based on their academic performance and engagement. 

 

3.4. Random Forest Algorithm: 

1. Introduction: 

Heart disease is one of the biggest health problems in the world, leading to many deaths 

each year. To help prevent this, it's important to know who is at risk of developing heart 

disease in the future. In this project, we use a technique called Random Forest, which is 

like a group of experts working together to make decisions.  

Imagine you have a panel of doctors, each looking at different health factors—like your 

age, cholesterol levels, and blood pressure. Each doctor gives their opinion on whether 

you might develop heart disease in the next ten years. The Random Forest algorithm 

works in a similar way: it combines the opinions (or decisions) of many different 

"decision trees" to make a final prediction. This method is powerful because it doesn’t 

rely on just one decision but rather on the collective wisdom of many. 

By using Random Forest, we can predict who is more likely to develop heart disease, 

allowing doctors to focus on preventive care for those individuals. This can ultimately 

lead to better health outcomes and save lives. 
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2. History and development of random forest algorithm: 

The Random Forest algorithm is a relatively recent development in the field of machine 

learning, but its roots go back to earlier ideas in decision tree learning. 

1) Decision Trees: 

The concept of decision trees, which are the building blocks of Random Forest, was 

first introduced in the 1960s and 1970s. A decision tree is a simple yet powerful tool 

that makes decisions by splitting data into different branches based on certain 

conditions. Each branch represents a possible decision path, leading to a final outcome. 

While decision trees are easy to understand and use, they have a tendency to overfit, 

meaning they might perform very well on training data but poorly on new, unseen data. 

2) Ensemble Learning: 

To overcome the limitations of individual decision trees, researchers began exploring 

ensemble methods in the 1980s and 1990s. Ensemble learning involves combining 

multiple models to improve overall performance. The idea is that a group of models, 

when combined, can make more accurate predictions than any single model on its own. 

This concept laid the groundwork for the development of the Random Forest algorithm. 

3) Birth of Random Forest: 

The Random Forest algorithm was developed by Leo Breiman, a statistician at the 

University of California, Berkeley, in 2001. Breiman built on the idea of "bagging" 

(short for bootstrap aggregating), which involves training multiple versions of a model 

on different subsets of the data and then averaging their predictions. Random Forest 

took this idea further by adding randomness to the process: each decision tree in the 

forest is trained on a random subset of the data and a random subset of the features. 

This randomness helps to create a diverse set of trees, reducing the risk of overfitting 

and improving the model's generalization to new data. 

4) Impact and Adoption: 

Since its introduction, Random Forest has become one of the most popular machine 

learning algorithms due to its high accuracy, robustness, and ability to handle large 

datasets with many features. It is widely used in various fields, including healthcare, 

finance, and marketing, for tasks such as classification, regression, and feature 

selection. Its ability to provide feature importance scores has also made it valuable for 

understanding which factors are most important in making predictions [30] 
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3. About the Random Forest Algorithm 

Imagine you have a forest, and each tree in this forest is a decision-maker. When you 

ask the forest a question, each tree gives its own answer. The forest then combines all 

these answers to give you the final decision. This is what the Random Forest algorithm 

does in machine learning. 

1) Key Characteristics 

a) Team Effort: Random Forest uses many decision trees working together to make 

better predictions. This teamwork helps improve accuracy and reduces mistakes. 

b) Strong and Flexible: It can handle large amounts of data with many features 

(columns) without getting overwhelmed. 

c) Sees the Big Picture: Like decision trees, Random Forest can understand complex 

relationships between features. 

d) Feature Importance: It tells you which features (columns) are most important for 

making predictions. 

 

2) Advantages 

a) Less Overfitting: Unlike a single decision tree that might get too specific, Random 

Forest reduces the risk of overfitting by averaging multiple trees. 

b) High Accuracy: It often provides very accurate predictions. 

c) Handles Missing Data: It can still make good predictions even if some data is 

missing. 

 

3) Disadvantages 

a) Complexity: It can be harder to understand compared to a single decision tree. 

b) Computationally Intensive: Building many trees can take a lot of computing power 

and time. 

 

4. Methodology 

For this project, Random Forest was chosen due to its robustness and ability to handle 

a large number of features. The algorithm works by building multiple decision trees 

and aggregating their results to produce a final prediction. The model was trained on a 

dataset containing various features such as age, blood pressure, cholesterol levels, 

smoking habits, and other factors that contribute to the likelihood of developing heart 

disease. 
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1)  How the Random Forest Algorithm Works: 

 

Figure 3-8: Flowchart: Working of Random Forest Algorithm 

 

Start 

i. Select Random Subsets of Data 

a. Randomly select subsets of data from the training set. 

ii. Build Decision Trees 

a. For each subset, build a decision tree. 

iii. Repeat for Multiple Trees 

a. Repeat the process to create multiple decision trees. 

iv. Make Predictions 

a. For classification: Each tree votes for a class. 

b. For regression: Each tree makes a prediction. 

v. Aggregate Results 

a. For classification: Take the majority vote. 

b. For regression: Average the predictions. 

vi. Output Final Prediction 

OR 

i. Initialization: For each tree, a random subset of features is chosen. Think of it as each 

tree getting a different set of tools to work with. 

ii. Tree Construction: Each tree is built using a different random subset of the training 

data. This diversity helps create a robust model. 
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iii. Voting (for Classification): When making a prediction, each tree votes for a class (like 

"yes" or "no"). The class with the most votes win. 

iv. Averaging (for Regression): For predicting a number, each tree gives its prediction, 

and the average of all these predictions is taken as the final answer.[31] 

 

5. Mathematical Model of Random Forest Algorithm: 

The Random Forest classification algorithm is a method used in machine learning to 

make predictions, such as whether an email is spam or not, or whether a patient has a 

particular disease. It does this by combining the results of many different decision trees. 

 

1) Decision Trees 

   What is a Decision Tree? 

Imagine you’re trying to decide whether to go outside based on the weather. You 

might ask yourself a series of questions like, "Is it raining?" or "Is it windy?" Each 

question leads you to another question or a decision. This process is like a decision 

tree. The tree starts at the top with one question, and branches down based on the 

answers, eventually leading to a final decision (like "Yes, I'll go outside" or "No, I'll 

stay inside"). 

  

2) Gini Impurity 

What It Is: 

Gini Impurity tells you how "pure" a group of data is. In simple terms, it measures 

how mixed up the data is in a particular split or group. If a group has a lot of variety 

(some people have heart disease, some don't), the impurity is high. If everyone in the 

group either has heart disease or doesn’t, the impurity is low. 

For your dataset: 

• Imagine you want to split your data based on the feature "Cholesterol Level." After 

the split, Gini Impurity will measure how mixed the groups are. If one group mostly 

consists of people who have heart disease and the other group mostly consists of 

people who don’t, Gini Impurity will be low (which is good). 

Mathematical Term (Gini Impurity) 

   𝐺𝑖𝑛𝑖(𝑡) = 1 − ∑ 𝑝 𝑖
2𝑐

𝑖=1  

•  pi: Probability of picking a data point from class iii (for example, CHD = Yes or CHD = 

No). 

• CCC: Number of different classes (in your case, 2 classes: CHD = Yes, CHD = No). 
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Example Using Your Dataset: 

Let’s say we split the data by cholesterol levels into two groups. In the first group, 80% of 

the people do not have heart disease (CHD = No), and 20% do (CHD = Yes). The Gini 

Impurity for that group would be: 

Gini=1−(0.82+0.22) =1−(0.64+0.04) =1−0.68=0.32 

Gini = 1 - (0.8^2 + 0.2^2) = 1 - (0.64 + 0.04) = 1 - 0.68 = 0.32 

Gini=1−(0.82+0.22) =1−(0.64+0.04) =1−0.68=0.32 

This means that the first group is fairly "pure" (a lot of people in this group do not have heart 

disease). The lower the Gini, the “purer” the group is. 

If a group had an equal number of people with and without heart disease (50% CHD = Yes, 

50% CHD = No), the Gini would be: 

Gini=1− (0.52+0.52) = 1−(0.25+0.25) = 1−0.5=0.5 

Gini = 1 - (0.5^2 + 0.5^2) = 1 - (0.25 + 0.25) = 1 - 0.5 0.5 

Gini=1− (0.52+0.52) = 1−(0.25+0.25) = 1−0.5=0.5 

This is a less pure group because it’s more mixed. 

Why Gini Impurity is Useful: 

The decision tree in the Random Forest uses Gini Impurity to decide which feature (like 

cholesterol, age, or smoking) is the best one to split on. The goal is to find splits that make 

the groups as pure as possible, meaning the people in each group are mostly similar (either a 

lot of them have heart disease or a lot don’t). 

   

3) Entropy and Information Gain: 

a) Entropy: 

Entropy is a way to measure how "messy" or "uncertain" the data is. If everyone in the 

group is the same (either they all have heart disease or none of them do), the entropy is 

low. But if the group is mixed, the entropy is high. 

For your dataset: 

• Entropy helps the model understand how much uncertainty there is in the group. A high 

entropy means the group is very mixed (some people have heart disease, some don’t). 

A low entropy means the group is more certain (most people in the group either have 

heart disease or don’t). 

Mathematical Term (Entropy): 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑡) = − ∑ 𝑝𝑖𝑙𝑜𝑔₂(𝑝𝑖)
𝑐

𝑖=1
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•   pi: Probability of class iii (CHD = Yes or No). 

• C: Number of classes (here, 2: CHD = Yes and CHD = No). 

Example Using Your Dataset: 

Let’s say after splitting the data by cholesterol levels, one group has 90% of people 

without heart disease (CHD = No) and 10% with heart disease (CHD = Yes). The 

entropy of this group would be: 

Entropy=− [0.9log 2  (0.9) + 0.1log 2  (0.1)] 

Entropy = - [0.9 \log_2(0.9) + 0.1 \log_2(0.1)] 

Entropy=−[0.9log2(0.9) + 0.1log2(0.1)] 

 

Calculating this: 

Entropy=−[0.9×(−0.152)+0.1×(−3.32)]= −[−0.137+(−0.332)] = 0.469 

This is low entropy, meaning the group is not very mixed. 

If the group had 50% CHD = Yes and 50% CHD = No, the entropy would be: 

Entropy = - [0.5 \log_2(0.5) + 0.5 \log_2(0.5)] = - [0.5 \times (-1) + 0.5 \times (-1)] =1 

This is higher entropy because the group is more mixed and uncertain. 

b) Information Gain: 

Information Gain tells the model how much "certainty" is gained after making a split. If 

splitting the data based on cholesterol levels reduces the entropy a lot, the information gain 

is high, meaning the split was helpful. 

For your dataset: 

• Information Gain helps the model decide which feature is the best to split on. It chooses 

the feature that reduces the most uncertainty (entropy), helping it create purer groups. 

Mathematical Term (Information Gain): 

𝐼𝐺 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑝𝑎𝑟𝑒𝑛𝑡) − ∑
𝐾

𝑘=
   ∣𝑆𝑘| /|S| Entropy (Sk) 

• Sk: Subset after the split. 

• ∣Sk∣/∣S∣ Proportion of data in subset Sk. 

• K: Number of groups after the split. 

Example Using Your Dataset: 

Suppose the entropy before the split (the parent) is 0.8. After splitting by cholesterol levels, 

the two groups have entropies of 0.469 and 0.6. Information Gain is: 
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Example Using Your Dataset: 

Suppose the entropy before the split (the parent) is 0.8. After splitting by cholesterol levels, 

the two groups have entropies of 0.469 and 0.6. Information Gain is: 

 

This means splitting the data by cholesterol level helped reduce the uncertainty by 0.278, 

making it a good split. 

 

4) Bootstrap Aggregation (Bagging) 

What is Bootstrap Aggregation? 

Imagine you have a deck of cards. To train the model, you shuffle the deck and draw cards 

multiple times, allowing repeats. Each draw gives you a different "hand" of cards. In 

machine learning, this is called bootstrapping. Each decision tree in a Random Forest is 

trained on a different "hand" of data (a subset of the original data). 

      

   Random Feature Selection: 

 At each step of building a tree, instead of looking at all possible features (like "Is it 

raining?" or "Is it windy?"), the algorithm only considers a random subset of features. This 

randomness helps make each tree different and prevents overfitting (when a model is too 

closely tailored to the training data). 

 

5) Tree Construction 

The tree is built by asking questions (splits) that try to make the data in each branch as 

"pure" as possible, meaning all the data in a branch is as similar as possible (like all red 

balls in a branch). 

 

6) Ensemble of Trees 

   What is an Ensemble? 

Instead of relying on just one decision tree, Random Forest combines the results of many 

trees. Imagine asking 100 people whether it will rain tomorrow. Each person (tree) gives 

an answer, and you go with the majority vote. This is what happens in Random Forest. 
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   Voting Mechanism: 

    For classification (like deciding if an email is spam or not), each tree gives a vote. The 

class wit 

7) Out-of-Bag (OOB) Error Estimation 

What is Out-of-Bag Error? 

When each tree is trained, about one-third of the data is left out. This data can be used to test 

how well the tree performs. The average error across all trees on this left-out data is called the 

Out-of-Bag error. It's like a built-in way to check how good the Random Forest is at making 

predictions without needing extra data. 

 

8) Probability Estimates 

What are Probability Estimates? 

Instead of just saying "yes" or "no," Random Forest can also tell you how confident it is in its 

prediction. For example, it might say there’s an 80% chance of rain tomorrow. This is done 

by looking at how many trees voted for each possible outcome and calculating the 

probabilities.[33] 

 

 

G. Tools and Technology 

 
1) Introduction to Python 

“Python has gotten sufficiently weapons grade that we don’t descend into R anymore. 

Sorry, R people. I used to be one of you but we no longer descend into R.” 

 – Chris Wiggins 

 

Python is a general-purpose programming language conceived in 1989 by Dutch 

programmer Guido van Rossum. Python is free and open source, with development 

coordinated through the Python Software Foundation.  

Python has experienced rapid adoption in the last decade and is now one of the most 

commonly used programming languages. 

 

a. Common Uses 

Python is a general-purpose language used in almost all application domains such as 

• Communications 

• Web development (Flask and Django covered in the future chapters) 
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• CGI and graphical user interfaces 

• Game development 

• AI and data science (very popular) 

• Multimedia, data processing, security, etc. 

Python is beginner-friendly and routinely used to teach computer science and programming 

in the top computer science programs. Python is particularly popular within the scientific and 

data science communities. It is steadily replacing familiar tools like Excel in the fields of 

finance and banking. 

b. Features 

Python is a high-level language suitable for rapid development. It has a relatively small core 

language supported by many libraries. Multiple programming styles are supported 

(procedural, object-oriented, functional, etc.) 

Python is interpreted rather than compiled. 

c. Syntax and Design 

One nice feature of Python is its elegant syntax. Elegant code might sound superfluous, but 

in fact it is highly beneficial because it makes the syntax easy to read and easy to remember. 

Closely, related to elegant syntax is an elegant design. Features like iterators, generators, 

decorators, and list comprehensions make Python highly expressive, allowing you to get 

more done with less code. Namespaces improve productivity by cutting down on bugs and 

syntax errors. 

2) Scientific Programming 

Python has become one of the core languages of scientific computing. 

It is either the dominant player or a major player in 

• Machine learning and data science 

• Astronomy 

• Artificial intelligence 

• Chemistry 

• Computational biology 

• Meteorology 

Its popularity in economics is also beginning to rise. 

 

3) Why Python for Artificial Intelligence 

Python is very popular for Artificial Intelligence developers for a few reasons: 

1. It is easy to use: 

• Python is easy to use and has a fast-learning curve. New data scientists can easily 

learn Python with its simple to utilize syntax and better comprehensibility. 
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• Python additionally gives a lot of data mining tools that help in better handling of 

the data, for example, Rapid Miner, Weka, Orange, and so on. 

• Python is significant for data scientists since it has many useful and easy to use 

libraries like Pandas, NumPy, SciPy, TensorFlow, and many more concepts that a 

skilled Python programmer must be well acquainted with. 

 

2. Python is flexible: 

• Python not only lets you create software but also enables you to deal with the 

analysis, computing of numeric and logical data, and web development. 

• Python has additionally become ubiquitous on the web, controlling various 

Prominent websites with web development frameworks like TurboGears, Django, 

and Tornado. 

• It is perfect for developers who have the talent for application and web development. 

No big surprise, most data scientists favor this to the next programming alternatives 

available in the market. 

 

3. Python builds better analytics tools: 

• Data analytics is a necessary part of data science. Data analytics tools give 

information about different frameworks that are important to assess the performance 

in any business. Python programming language is the best choice for building data 

analytics tools. 

• Python can easily provide better knowledge, get examples, and correlate data from 

big datasets. Python is additionally significant in self-service analytics. 

• Python has likewise helped the data mining organizations to all the more likely to 

handle the data for their sake. 

 

4. Python is significant for deep learning: 

• Python has a lot of packages like TensorFlow, Keras, and Theano that are assisting 

data scientists with developing deep learning algorithms. Python gives superior help 

with regard to deep learning algorithms. 

• Deep learning algorithms were inspired by the human brain architecture. It manages 

to build artificial neural networks that reenact the conduct of the human mind. Deep 

learning neural networks give weight and biasing to different input parameters and 

give the desired output 

 

5. Huge community base: 

• Python has a gigantic community base of engineers and data scientists like 

Python.org, Fullstackpython.com, realpython.com, etc. Python developers can 

impart their issues and thoughts to the community. Python Package Index is an 

extraordinary place to explore the different skylines of the Python programming 

language. Python developers are continually making enhancements in the language 

that is helping it to turn out to be better over time. 

 

4) Setting Up the Python Environment  

After understanding the basics of Python as a programming language, the next essential 

step is to set up the appropriate environment to write and execute our Python code 
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efficiently. The environment setup is crucial as it ensures that all necessary dependencies 

are installed, and the code runs smoothly. 

There are several options available for setting up a Python environment: 

1. Anaconda Distribution: 

• Anaconda provides a comprehensive platform for data science and machine learning 

projects. It includes the Python interpreter, Jupyter notebooks, and numerous pre-

installed libraries like NumPy, Pandas, and scikit-learn. It's a popular choice due to 

its ease of installation and robust package management via `conda`. 

 

2. Visual Studio Code (VS Code): 

• VS Code, a lightweight yet powerful code editor, is another excellent choice for 

setting up a Python environment. It offers extensions for Python, integrated terminal 

access, and a user-friendly interface. VS Code also supports virtual environments 

and provides debugging tools for Python code. 

 

3. Jupyter Notebooks: 

• For interactive coding, Jupyter notebooks are an excellent option. They allow you 

to write and execute Python code in blocks, visualize data with plots, and document 

your work in a readable format. This makes it easier to experiment with machine 

learning algorithms and track progress. 

 

Once the environment is set up, we can proceed to write and execute our machine learning 

code. With the proper setup in place, we ensure that the Python interpreter, libraries, and 

tools are readily available for seamless development. This brings us to the next step: 

implementing machine learning algorithms and evaluating their performance 

5) Transition to Machine Learning Code  

With the environment ready, we can now begin coding our machine learning models. In 

the upcoming sections, we will walk through the process of building, training, and 

evaluating different machine learning algorithms, using the setup we have just prepared. 

The choice of algorithms, their configurations, and performance optimizations will be 

detailed step by step. 

In this project, several machine learning models were employed to tackle the problem at 

hand. Each model was selected based on its suitability for the dataset and the specific 

characteristics of the problem. The following algorithms were implemented: 

a) Decision Tree 

b) K-Nearest Neighbors (KNN) 

c) Logistic Regression 

d) Random Forest 

These models represent a mix of interpretable and complex algorithms, providing a 

balance between simplicity, accuracy, and computational efficiency.  
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Chater 4: Data Collection 

 

4.1. About dataset:  

World Health Organization has estimated 12 million deaths occur worldwide every year due 

to heart diseases. Half the deaths in the United States and other developed countries are due 

to cardio vascular diseases. The early prognosis of cardiovascular diseases can aid in making 

decisions on lifestyle changes in high-risk patients and in turn reduce the complications [33].  

4.1.1. Dataset Description 

The dataset used for this analysis included several key health parameters that are commonly 

associated with heart disease risk. The features selected for prediction were: 

1. Age: The age of the individual. 

2. CurrentSmoker: A binary indicator of whether the individual is a current smoker. 

3. CigsPerDay: The average number of cigarettes smoked per day by the individual. 

4. BPMeds: Whether the individual is on blood pressure medication. 

5. PrevalentStroke: A binary indicator of whether the individual has had a stroke in the 

past. 

6. PrevalentHyp: Whether the individual has a history of hypertension. 

7. Diabetes: A binary indicator of whether the individual has diabetes. 

8. TotChol: Total cholesterol level of the individual. 

9. SysBP: Systolic blood pressure of the individual. 

10. DiaBP: Diastolic blood pressure of the individual. 

11. BMI: Body Mass Index, which is a measure of body fat based on height and weight. 

12. HeartRate: The individual’s resting heart rate. 

13. Glucose: Blood glucose level of the individual. 

14. TenYearCHD: The target variable, indicating whether the individual developed CHD 

within ten years (1 = Yes, 0 = No). 

These features represent a combination of demographic information, lifestyle habits, and 

clinical measurements, all of which are critical in assessing the risk of developing heart 

disease. The dataset provided a comprehensive foundation for building and evaluating 

machine learning models. 
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4.2. Data Preprocessing 

Before feeding the data into the machine learning models, several preprocessing steps were 

applied: 

• Handling Missing Values: Missing values in features such as BPMeds, TotChol, BMI, 

and Glucose were handled using mean imputation, replacing missing entries with the 

average value of the respective feature. 

• Feature Scaling: Since features like SysBP, DiaBP, TotChol, and Glucose had different 

units and ranges, feature scaling was applied using standardization to ensure that all 

features contributed equally to the model's learning process. 

• Encoding Categorical Variables: Binary categorical variables (e.g., CurrentSmoker, 

PrevalentStroke, PrevalentHyp, and Diabetes) were already in a numeric format, so no 

additional encoding was necessary. 

4.3. Model Selection 

To predict the risk of CHD, a variety of machine learning algorithms were implemented 

and evaluated. The models used in this project include: 

1) Decision Tree: A simple and interpretable model that works by recursively 

splitting the dataset based on feature values to create a tree-like structure. 

2) K-Nearest Neighbors (KNN): A distance-based algorithm that classifies data 

points based on the majority class of their nearest neighbors in the feature space. 

3) Logistic Regression: A statistical model that uses a logistic function to model 

binary dependent variables, making it a strong baseline for binary classification 

problems. 

4) Random Forest: An ensemble learning method that builds multiple decision trees 

and combines their predictions to improve accuracy and reduce overfitting. 

Each model was trained on the dataset and evaluated using cross-validation to ensure that 

the results were reliable and not overly dependent on any single train-test split. 

4.4. Model Evaluation 

The performance of each model was evaluated using several metrics: 

• Accuracy: The percentage of correct predictions made by the model. 

• Precision: The proportion of positive predictions that were actually correct. 

• Recall (Sensitivity): The proportion of actual positive cases that were correctly 

identified by the model. 

• F1 Score: The harmonic means of precision and recall, which provides a balanced 

measure of performance. 
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These metrics were chosen to give a comprehensive view of each model’s performance, 

particularly in a medical setting where both false positives and false negatives can have 

significant consequences. 

 

  

First 25 rows and all columns of our dataset 

 

Figure 4-1: First 25 rows and all columns of our dataset 
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Chapter 5: Experimentation 

 

5.1. Introduction 

This chapter presents the implementation details of our analysis on the Coronary Heart Disease 

(CHD) dataset using various machine learning algorithms. We will document the code used 

for four key algorithms: Decision Trees, K-Nearest Neighbors (KNN), Logistic Regression, 

and Random Forest. Each section will provide the Python code used to preprocess the data, 

train the models, and evaluate their performance. This documentation serves as a reference for 

reproducibility and offers insights into the technical aspects of our analysis. 

 

5.2. Implementation of the Decision Tree Algorithm 

Step 1: Import Required Libraries 

 

Figure 5.1 - 1: Import Required Libraries 

  



 
63 

 

Step 2: Load and Inspect the Dataset 

 
Figure 5.1 – 2: Load and Inspect the Dataset 

Step 3: Handle Missing Values 

 
Figure5.1-3: handle missing values  

 

Step 4: Feature Selection 

 
Figure5.1 – 4: Feature Selection 

 

Step 5: Define Features (X) and Target (y) 

 

Figure5.1 – 5: Define Features (X) and Target (y) 
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Step 6: Standardize Features 

 

Figure5.1 – 6: Standardize Features 

Step 7: Split the Data into Training and Testing Sets 

 
Figure5.1 – 7: Split the Data into Training and Testing Sets 

 

Step 8: Initialize the Decision Tree with Hyperparameter Tuning 

 
Figure5.1 – 8: Initialize the Decision Tree with Hyperparameter Tuning 

 

Step 9: Define the Parameter Grid for Hyperparameter Tuning 

       

Figure5.1 – 9: Define the Parameter Grid for Hyperparameter Tuning 

 

Step 10: Perform Grid Search with Cross-Validation 

 

Figure5.1 – 10: Perform Grid Search with Cross-Validation 
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Step 11: Retrieve the Best Model 

 
Figure5.1 – 11: Retrieve the Best Model 

 

Step 12: Train the Optimized Model 

 
Figure5.1 – 12: Retrieve the Best Model 

 

Step 13: Make Predictions on the Test Data 

 
Figure5.1 – 13: Make Predictions on the Test Data 

 

Step 14: Evaluate the Model Accuracy 

 
Figure5.1 – 14: Evaluate the Model Accuracy 

 

Step 15: Generate and Print the Confusion Matrix 
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Figure5.1 – 15: Generate and Print the Confusion Matrix 

 

Step 16: Generate and Print the Classification Report 

 

Figure5.1 – 16: Generate and Print the Classification Report 
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Step17: Visualize the Decision Tree 

 

Figure5.1 – 17: Visualize the Decision Tree 
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Step 18: Visualize the Confusion Matrix 

 

Figure5.1 – 18: Visualize the Confusion Matrix 

 

 

Step 19: Calculate and Print the F1 Score 

 

Figure5.1 – 19: Calculate and Print the F1 Score 
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7 Interpretation: 

The Decision Tree classifier on the dataset achieved an accuracy of 83.92%. This indicates that 

the model correctly predicted the presence or absence of Coronary Heart Disease (CHD) in about 

84% of the cases in the test set. While this accuracy suggests that the model has strong overall 

performance, a deeper analysis using the confusion matrix and F1 score provides a more nuanced 

understanding of the results. 

Confusion Matrix Breakdown: 

• True Negatives (TN): 641 

o The model correctly identified 641 patients who do not have CHD. 

• False Positives (FP): 5 

o The model incorrectly predicted CHD for 5 patients who do not have it. 

• False Negatives (FN): 119 

o The model incorrectly predicted no CHD for 119 patients who actually have it. 

• True Positives (TP): 6 

o The model correctly identified 6 patients who have CHD. 

F1 Score: 

• The F1 score is 0.09, which reflects the balance between precision and recall for the 

positive class (CHD). A lower F1 score indicates that the model struggles with predicting 

CHD cases, which is a critical aspect given the high importance of correctly identifying at-

risk patients. 

Positive Interpretation: 

1. High Accuracy: 

o With an accuracy of 83.92%, the model demonstrates strong general performance. 

It correctly classifies the majority of instances, which is a good starting point for 

further model refinement. This high accuracy is driven largely by the model's 

effectiveness at identifying  

patients who do not have CHD. 

2. Low False Positive Rate: 

o The model has a very low number of false positives (5 cases), which is a positive 

aspect in a medical setting. This means that the model rarely identifies CHD in 

patients who do not have it, avoiding unnecessary concern or treatment. 
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3. Opportunity for Improvement: 

o The model’s lower F1 score and the relatively high number of false negatives (119) 

highlight areas for growth. While this might seem like a limitation, it provides a 

clear direction for future enhancements. By focusing on improving recall for the 

CHD class, such as through feature engineering, tuning the decision threshold, or 

using more advanced techniques like ensemble methods, the model’s performance 

can be significantly enhanced. 

4. Foundation for Further Work: 

o The results provide a solid foundation for iterative improvement. With a high 

accuracy rate and a low number of false positives, the current model is already 

valuable. By addressing the imbalance between classes and focusing on reducing 

false negatives, the model can evolve into a highly reliable tool for predicting CHD. 

 Conclusion: 

The Decision Tree model performs well in many respects, particularly in avoiding false 

positives and achieving a strong overall accuracy. While there is room for improvement in 

identifying true CHD cases (as reflected by the F1 score), these results serve as a strong 

baseline. With further refinement, the model has the potential to become a highly accurate and 

reliable tool for predicting Coronary Heart Disease, ultimately benefiting patient outcomes. 
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5.3. Code of KNN 

1. Step 1 - Import Necessary Libraries 

 

Figure 5.2  

1. Pandas (import pandas as pd) 

• Purpose: Pandas is a popular library used for data manipulation and analysis. It 

offers data structures like DataFrames and Series, which are essential for handling 

structured data. Pandas is known for its ability to efficiently handle large datasets, 

perform data cleaning, and facilitate complex data transformations and aggregations. 

• Key Features: 

o DataFrame and Series: Provides powerful and flexible structures for working with 

labeled data. 

o Data Manipulation: Facilitates reading, writing, and processing data in various 

formats (CSV, Excel, SQL, JSON, etc.). 

o Data Cleaning: Tools for handling missing values, filtering, and transforming data. 

o Data Aggregation: Supports group-by operations and pivot tables for summarizing 

data. 

2. NumPy (import numpy as np) 

• Purpose: NumPy is the foundational package for numerical computing in Python. It 

supports the creation and manipulation of large, multi-dimensional arrays and 

matrices. It also provides a vast library of mathematical functions to operate on these 

arrays, making it crucial for scientific computing tasks. 

• Key Features: 

o Arrays: Efficient storage and manipulation of numerical data in multi-

dimensional arrays. 
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o Mathematical Functions: Offers a wide range of functions for mathematical 

operations on arrays. 

o Linear Algebra: Includes support for linear algebra operations such as matrix 

multiplication and eigenvalue computation. 

o Random Number Generation: Functions to generate random numbers from 

various distributions. 

3. Matplotlib (import matplotlib.pyplot as plt) 

• Purpose: Matplotlib is a widely used plotting library that enables data visualization 

in Python. It allows users to create static, interactive, and animated plots. Matplotlib 

is highly customizable, making it suitable for both basic and complex 

visualizations. 

• Key Features: 

o Plotting: Provides a variety of plotting options including line plots, scatter plots, 

bar charts, histograms, and more. 

o Customization: Extensive options for customizing the appearance of plots (e.g., 

colors, labels, titles). 

o Integration: Compatible with other libraries like Pandas and NumPy for 

visualizing data directly from DataFrames or arrays. 

4. Seaborn (import seaborn as sns) 

• Purpose: Seaborn is built on top of Matplotlib and provides a high-level interface 

for creating attractive and informative statistical graphics. It simplifies the process of 

generating complex visualizations and comes with several built-in themes for more 

aesthetically pleasing plots. 

• Key Features: 

o Statistical Visualization: Specializes in statistical plots such as violin plots, box 

plots, scatter plots, and pair plots. 

o Color Palettes and Themes: Offers predefined color palettes and styles to 

enhance visual appeal. 

o Integration with Pandas: Works seamlessly with Pandas DataFrames, allowing 

for quick visualization of structured data. 

o Faceting: Supports splitting data into subsets and visualizing multiple plots side by 

side. 
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5. Scikit-Learn (from sklearn.) 

• Purpose: Scikit-Learn is one of the most popular libraries for machine learning in 

Python. It provides simple and efficient tools for data analysis and modeling, 

covering a broad range of machine learning algorithms. It also offers utilities for 

model selection, evaluation, and preprocessing. 

• Modules Used: 

o KNeighborsClassifier: Implements the k-nearest neighbors algorithm for 

classification, which predicts the class of a data point based on the classes of its 

nearest neighbors. 

o train_test_split: Splits the dataset into training and testing subsets, which is 

crucial for evaluating the performance of machine learning models. 

o cross_val_score: Performs cross-validation, a technique to evaluate how a model 

will generalize to an independent dataset. 

o GridSearchCV: Used for hyperparameter tuning to find the optimal parameters 

for a model using grid search combined with cross-validation. 

o StandardScaler: Standardizes features by removing the mean and scaling to unit 

variance, which is important for models sensitive to feature scaling. 

o Accuracy and Evaluation Metrics: Includes tools like accuracy score, confusion 

matrix, and classification report to evaluate model performance. 

 

2. Load Dataset 

 

Figure 5.2  

 

1. df: 

• This is a variable name, commonly used as shorthand for "DataFrame." In this context, 

df will hold the data that is loaded from the CSV file. 

• After this line of code is executed, df will contain the structured data from the CSV 

file in a table-like format with rows and columns. 
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2. pd: 

• pd is an alias for the Pandas library, which is established when you import Pandas 

using import pandas as pd. 

• It allows you to call Pandas functions in a shorter, more convenient way. In this case, 

it's used to access the read_csv function from the Pandas library. 

3. pd.read_csv('data.csv'): 

• read_csv is a function provided by Pandas that reads the contents of a CSV file and 

converts it into a DataFrame. The function is highly versatile and allows for various 

parameters to handle different file formats, delimiters, and data types. 

• 'data.csv' is the name of the file being read. The function assumes this file is in 

the current working directory. If the file is in a different directory, you would need to 

provide the full path (e.g., pd.read_csv('/path/to/data.csv')). 

When this function is called, Pandas reads the CSV file line by line, parses the data, and 

organizes it into a DataFrame structure. Each line in the CSV corresponds to a row in the 

DataFrame, and each comma-separated value corresponds to a cell in a column. 

Key Methods for Data Analysis 

 1.  Data Description 

 

Figure 5.2  

 

o Purpose: Provides a statistical summary of numerical columns in the DataFrame. 

o Usage: df.describe() 

o Output: Includes count, mean, standard deviation, minimum, 25th percentile, 

median (50th percentile), 75th percentile, and maximum for each numerical 

column. 
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Output 

 

Figure 5.2  

 

 

  2.  Data Info 

 

Figure 5.2  

 

Purpose: Gives a concise summary of the DataFrame, including the index dtype, column 

dtypes, non-null values, and memory usage. 

o Usage: df.info() 

o Output: Displays the number of entries, the column names, their data types, and 

the number of non-null values. 
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Output 

 

Figure 5.2  

 

 

           3. Checking Null Values 

 

 

Figure 5.2  

 

o Purpose: Identifies missing values in the DataFrame. 
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o Usage: df.isnull() 

o Output: Returns a DataFrame of the same shape with boolean values (True for 

missing values and False otherwise). 

 

Output 

 

Figure 5.2  
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4. Checking Duplicated Values 

 

Figure 5.2  

o Purpose: Identifies duplicate rows in the DataFrame. 

o Usage: df.duplicated() 

o Output: Returns a Series with boolean values (True for duplicate rows and 

False otherwise). 

Output 

 

Figure 5.2  

5. Calculating Correlation  

 

Figure 5.2  
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o Purpose-Calculate Correlation- Computes correlations between all features and 

specifically identifies how each correlates with 'TenYearCHD'. 

o Usage-Extract & Sort: Extracts correlations with 'TenYearCHD' from the correlation 

matrix and sorts them in descending order. 

o Identify Top 5-Selects and prints the top 5 features most strongly correlated with 

'TenYearCHD', excluding 'TenYearCHD' itself. 

OUTPUT 

 

Figure 5.2  
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6.  Training model 

 

Figure 5.2  
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Figure 5.2  

7. Classification Report 

 

Figure 5.2  

Purpose - Provides a detailed performance evaluation of a classification model by calculating 

key metrics for each class.  It helps in understanding how well the model is performing for each 

target class, using measures like precision, recall, and F1-score. 

Usage – 

o Precision- Measures the accuracy of the positive predictions, i.e., the proportion of true 

positives among all predicted positives. 

o Recall - Measures the ability to capture actual positives, i.e., the proportion of true 

positives identified out of all actual positives. 

o F1-Score - A balance between precision and recall, providing a harmonic mean of the 

two metrics.  

o Accuracy - Measures overall performance across all classes, indicating the percentage of 

correct predictions. 
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OUTPUT 

 

Figure 5.2  

As accuracy is 0.99, its needed to reevaluate the model we will start with  checking class 

imbalance  

➢ CHECKING CLASS DISTRIBUTION OF TRAINING DATASET 

 

Figure 5.2 
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Output 

 

Figure 5.2  
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➢ CHECKING CLASS DISTRIBUTION OF TESTING DATASET 

 

Figure 5.2  

 

Output 

 

Figure 5.2  
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➢ To balance class distribution we would use Synthetic Minority Oversampling 

Technique (SMOTE) OF Training Data  

 

Figure 5.2  

            Output 

 

Figure 5.2  
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➢ To balance class distribution, we would use Synthetic Minority Oversampling 

Technique (SMOTE) OF Testing Data  

 

 

Figure 5.2  

        Output 

 

Figure 5.2  

 

After Applying Smote When Model Is Retrained Then It Gives Accuracy Of 68%  As Below  

 

Figure 5.2  
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5.4. Code of Logistic Regression 

1. Step 1 – Import Necessary Libraries 

 

Figure 5.3 – 1: Import Necessary Libraries 

• pandas: Used for data manipulation and analysis. 

• numpy: Supports numerical computations. 

• matplotlib.pyplot & seaborn: For plotting and data visualization. 

• train_test_split: Splits the data into training and testing sets. 

• learning_curve & StratifiedKFold: For evaluating model performance via cross-

validation. 

• StandardScaler: Standardizes the dataset (mean = 0, variance = 1). 

• PCA: For dimensionality reduction using Principal Component Analysis. 

• LogisticRegression: Logistic Regression classifier. 

• SMOTE: For handling class imbalance by oversampling the minority class. 

• accuracy_score, classification_report, etc.: Used for evaluating model 

performance. 

 

2. Step 2 – Load Dataset and Drop Null Values 
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Figure 5.3 – 2: Load Dataset and Drop Null Values 

• df.dropna(inplace=True): Removes rows with missing values. 

• Load the dataset from a CSV file. 

Output 

 

Figure 5.3 – 3: Load Dataset and Drop Null Values Output 
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3. Step 3 – Describe the Dataset 

 

Figure 5.3 – 4: Describe the Dataset 

 

• df.describe(): Provides statistical summaries (mean, min, max, etc.) for numeric 

columns 

Output  
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Figure 5.3 – 5: Describe the Dataset Output 

4. Step 4 – Dataset Info 

 

Figure 5.3 – 6: Dataset Info 

• df.info(): Displays a concise summary of the dataframe. 

Output 

 

Figure 5.3 – 7: Dataset Info Output 
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5. Step 5 – Check for Null Values 

 

Figure 5.3 – 8: Check for Null Values 

• df.isnull() : Checks for missing  

Output 

 

 

Figure 5.3 – 9: Check for Null Values Output 
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6. Step 6 – Check for Duplicated Values 

 

Figure 5.3 – 10: Check for Duplicated Values 

• df.duplicated(): Checks for duplicate values. 

Output 

 

Figure 5.3 – 11: Check for Duplicated Values Output 
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7. Step 7 – Calculate Correlation Matrix 

 

Figure 5.3 – 12: Calculate Correlation Matrix 

• df.corr(): Computes the correlation matrix of the dataset. 

• ten_year_chd_corr: Extracts the correlation of each feature with the target variable 

TenYearCHD. 

• top_5_features: Selects the top 5 most correlated features (excluding 

TenYearCHD). 

 

Output 

 

Figure 5.3 – 13: Calculate Correlation Matrix Output 
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8. Step 8 – Select Features 

 

Figure 5.3 – 14: Select Features 

• x: Features are selected by dropping some columns. 

• y: Target variable is TenYearCHD. 

 

9. Step 9 – Dataset Split 

 

Figure 5.3 – 15: Dataset Split 

• Splits the data into 70% training and 30% testing using train_test_split. 

 

10. Step 10 – Apply SMOTE on Training Set 

 

Figure 5.3 – 16: Apply SMOTE on Training Set 

• SMOTE (Synthetic Minority Over-sampling Technique) oversamples the minority class 

in the training set to balance the class distribution. 

Output 

 

Figure 5.3 – 17: Apply SMOTE on Training Set Output  
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11. Step 11 – Apply SMOTE on Test Set 

 

Figure 5.3 – 18: Apply SMOTE on Test Set 

• SMOTE (Synthetic Minority Over-sampling Technique) oversamples the minority class 

in test sets to balance the class distribution. 

Output 

 

Figure 5.3 – 19: Apply SMOTE on Test Set Output 

 

12. Step 12 - Standardize the Data 

 

Figure 5.3 – 20: Standardize the Data 

• StandardScaler standardizes features by removing the mean and scaling to unit 

variance. 

 

13. Step 13 – Apply PCA 

 

Figure 5.3 – 21: Apply PCA 

• Reduces the dimensionality of the dataset to 5 components using PCA.  
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14. Step 14 – Apply Logistic Regression Model 

 

Figure 5.3 – 22: Apply Logistic Regression Model 

• Trains a Logistic Regression classifier on the training data. 

Output 

 

Figure 5.3 – 23: Apply Logistic Regression Model Output 

 

15. Step 15 – Training Set Model Evaluation 

 

Figure 5.3 – 24: Training Set Model Evaluation 

• Prediction: Predicts the outcomes on the training set. 

• Evaluation: Calculates metrics like accuracy, F1 score, and recall on the training data. 

Output 

 

Figure 5.3 – 25: Training Set Model Evaluation Output 
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16. Step 16 – Test Set Model Evaluation 

 

Figure 5.3 – 26: Test Set Model Evaluation 

• Prediction: Predicts the outcomes on the testing set. 

• Evaluation: Calculates metrics like accuracy, F1 score, and recall on the testing data. 

Output 

 

Figure 5.3 – 27: Test Set Model Evaluation Output 

 

17. Step 17 – Classification Report  

 

Figure 5.3 – 28: Classification Report 

• Provides a detailed classification report, including precision, recall, F1 score, and support 

for each class. 
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Output 

c  

Figure 5.3 – 29: Classification Report Output 

 

18. Step 18 - Confusion Matrix for Training Dataset 

 

Figure 5.3 – 30: Confusion Matrix for Training Dataset 

Confusion matrix interpretation for training dataset 

• True Positives (TP): The model correctly identified 367 cases of heart disease. 

• False Negatives (FN): The model failed to identify 82 cases of heart disease, which means 

it missed many patients who actually have the disease. 

• True Negatives (TN): The model correctly identified 2441 individuals as not having heart 

disease. 

• False Positives (FP): The model incorrectly classified 78 individuals as having heart 

disease when they did not. 
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Output 

 

Figure 5.3 – 31: Confusion Matrix for Training Dataset Output 

 

19. Step 19 - Confusion Matrix for Testing Dataset 

 

Figure 5.3 – 32: Confusion Matrix for Testing Dataset 

Confusion matrix interpretation for test dataset 

• True Positives (TP): The model correctly identified 167 cases of heart disease. 

• False Negatives (FN): The model failed to identify 28 cases of heart disease, which means 

it missed many patients who actually have the disease. 

• True Negatives (TN): The model correctly identified 1067 individuals as not having heart 

disease. 
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• False Positives (FP): The model incorrectly classified 26 individuals as having heart 

disease when they did not. 

Output 

 

Figure 5.3 – 33: Confusion Matrix for Testing Dataset Output 

20. Step 20 – ROC Curve 

 

Figure 5.3 - 34: ROC Curve 

• Plots the ROC curve (Receiver Operating Characteristic) and calculates the AUC (Area 

Under Curve) to visualize the trade-off between the true positive rate and false positive 

rate. 
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Output 

 

Figure 5.3 – 35: ROC Curve Output 

21. Step 21 – Learning Curve 

 

Figure 5.3 – 36: Learning Curve 

 

• Learning Curve: Shows how the training accuracy and cross-validation accuracy change 

with the size of the training set. 
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Output 

 

Figure 5.3 – 37: Learning Curve Output 

 

 

  



 
103 

 

 

5.5. Implementation of Random Forest Algorithm: 

➢ Import Libraries  

 

 

 

 

• import: This keyword is used to bring in libraries (or tools) that contain special functions 

you can use in your code. 

• pandas as pd: pandas is a library used for data manipulation and analysis, and we're 

giving it a short name, pd, so we can easily refer to it later. 

• numpy as np: numpy is a library for numerical calculations, and we’re calling it np for 

short. 

• matplotlib.pyplot as plt : matplotlib is a library for creating charts and plots. pyplot is a 

module in matplotlib used for making graphs, and we’re calling it plt. 

• seaborn as sns: seaborn is a library for making statistical graphics, and we’re calling it 

sns. 

• train_test_split: This is a function that splits your data into training and testing sets. 

• RandomForestClassifier : This is a model that builds multiple decision trees to make 

predictions. 

• confusion_matrix, accuracy_score, classification_report: These are functions used to 

evaluate the performance of your model. 

• SelectFromModel: This function helps select the most important features in your dataset. 

 

➢ Loading the Dataset: We start by loading the dataset from your file (CHD.csv). 

 

 

 

 

➢ Displaying the First Few Rows: To understand what our data looks like; we print 

out the first few rows. This gives us an initial view of the dataset. 
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➢ Checking for Missing Values: We check if there are any missing values (empty spots) 

in our data. This is important because missing values can cause issues during analysis. 

 

➢ Handling Missing Values: We fill any missing values with the mean value of each 

respective column. This step ensures that our data is complete and ready for analysis. 
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➢ Verifying Missing Values: After filling missing values, we check again to confirm 

that there are no more missing values left in the dataset. 

 

➢ Defining Features and Target: We separate the dataset into features (X) and the 

target variable (y). Features are all the columns except TenYearCHD, which is the 

outcome we want to predict. 
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➢ Splitting the Data: We split the data into two sets: one for training the model and the 

other for testing it. This helps us evaluate how well the model performs on unseen 

data. 

 

➢ Initializing the Random Forest Model: We create a Random Forest model. This model 

is made up of multiple decision trees that work together to make predictions. 

 

➢ Training the Model: We train the Random Forest model using the training data. 

During this step, the model learns from the data to make predictions. 

 

➢ Feature Selection: We use the trained Random Forest model to identify which 

features are most important in predicting CHD. This helps in reducing the number 

of features to the most relevant ones. 

 

 

➢ Creating the Feature Matrix: We create a new dataset that only contains the most 

important features identified in the previous step. This reduces the complexity of the 

model. 
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➢ Training the Model Again: We train the Random Forest model again, but this time 

only with the selected important features. This often improves the model’s 

performance. 

 

➢ Making Predictions: We use the newly trained model to make predictions on the test 

data. This tells us how well the model performs. 

 

 

➢ Calculating Accuracy, Confusion Matrix, and Classification Report: We evaluate the 

model’s performance by calculating accuracy (how many predictions were correct), 

confusion matrix (a table that shows how well the model classified each class), and a 

classification report (which gives precision, recall, and F1-score). 
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➢ Making a Graph of the Confusion Matrix: We create a heatmap to visually represent 

the confusion matrix. This makes it easier to see where the model made correct and 

incorrect predictions. 
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➢ Plotting Feature Importance: Finally, we create a bar chart that shows the 

importance of each selected feature. This tells us which factors are most crucial in 

predicting CHD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

➢ Calculate F1 Score 
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Analysis and Challenges of Using Random Forest for Heart Disease Prediction 

Model Performance 

The model's performance was evaluated using a variety of metrics, including accuracy, the 

confusion matrix, precision, recall, and the F1-score. 

 

1. Accuracy: The model achieved an accuracy of 85%, indicating that 85% of the 

predictions made by the model were correct. 

 

2. Confusion Matrix: 

• True Positives (TP): The model correctly identified 11 cases of heart disease. 

• False Negatives (FN): The model failed to identify 184 cases of heart disease, which 

means it missed many patients who actually have the disease. 

• True Negatives (TN): The model correctly identified 1067 individuals as not having 

heart disease. 

• False Positives (FP): The model incorrectly classified 10 individuals as having heart 

disease when they did not. 

The confusion matrix reveals a significant challenge: while the model is good at identifying 

non-disease cases (TN), it struggles to accurately identify those who do have the disease 

(high FN), which is critical in a medical context. 

 

3. Classification Report: 

• Precision: The precision for predicting heart disease (1) was 52%, meaning that just over 

half of the individuals predicted to have heart disease actually did. 

• Recall: The recall for heart disease was only 6%, reflecting the model's poor performance 

in identifying true heart disease cases. 

• F1-score: The F1-score for heart disease prediction was 10%, indicating that the model 

struggles to balance precision and recall effectively. 
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Chapter 6: Conclusion, Results and Future Scope 
 

 6.1. Conclusion 

In this study, we aimed to develop and evaluate machine learning models for predicting the 

likelihood of Chronic Heart Disease (CHD) development in patients over the next ten years. 

The dataset, consisting of 4240 entries and 16 features, was analyzed using four different 

algorithms: Decision Tree, K-Nearest Neighbors (KNN), Logistic Regression, and Random 

Forest. To address the issue of class imbalance, SMOTE (Synthetic Minority Over-sampling 

Technique) was applied specifically to the KNN and Logistic Regression models. 

 

Key Findings 

1) Decision Tree: The Decision Tree model demonstrated a moderate accuracy of 83.92%. 

However, it struggled with the positive class (CHD-positive), achieving a low F1 score of 

0.09 and a recall of only 0.05. This indicates that while the model was reasonably good at 

identifying patients without CHD, it performed poorly in predicting patients who would 

develop CHD. 

 

2) K-Nearest Neighbors (KNN): The KNN model, after applying SMOTE, had an accuracy 

of 68%. Despite the SMOTE intervention, which aimed to balance the class distribution, 

the KNN model still showed limited effectiveness in predicting the positive class. The F1 

score for class 1 (CHD-positive) was 0.97, but the recall was 0.43, suggesting that while it 

could identify a significant proportion of CHD-positive cases, it missed many true cases. 

 

3) Logistic Regression: With the application of SMOTE, the Logistic Regression model 

achieved the highest accuracy of 96%. It demonstrated balanced performance with an F1 

score of 0.97 for class 0 (no CHD) and 0.82 for class 1 (CHD-positive). The recall for class 

1 was notably high at 0.86, indicating that the model was effective in identifying most of 

the patients who were likely to develop CHD. 

 

4) Random Forest: The Random Forest model achieved an accuracy of 85%. Similar to the 

Decision Tree, it faced challenges in predicting the positive class, with an F1 score of 0.10 

and a recall of 0.06 for class 1. This suggests that while the Random Forest model was 

generally robust, it still struggled with the imbalanced nature of the dataset. 

 

The results highlight the effectiveness of SMOTE in improving the performance of KNN and 

Logistic Regression models by addressing class imbalance. However, challenges remain in 

achieving balanced performance across all models, particularly in predicting the minority class 

(CHD-positive). 
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6.2. Results 

Summary of Performance Metrics 

1) Accuracy 

i. Decision Tree: 83.92% 

ii. KNN (with SMOTE): 68% 

iii. Logistic Regression (with SMOTE): 96% 

iv. Random Forest: 85% 

 

2) F1 Score for Class 0 (No CHD) / Class 1 (CHD Positive): 

i. Decision Tree: 0.91 / 0.09 

ii. KNN (with SMOTE): 1.00 / 0.97 

iii. Logistic Regression (with SMOTE): 0.97 / 0.82 

iv. Random Forest: 0.92 / 0.10 

 

3) Recall for Class 0 / Class 1 

i. Decision Tree: 0.99 / 0.05 

ii. KNN (with SMOTE): 0.73 / 0.43 

iii. Logistic Regression (with SMOTE): 0.98 / 0.86 

iv. Random Forest: 0.99 / 0.06 

 

4) Precision for Class 0 / Class 1 

i. Decision Tree: 0.84 / 0.55 

ii. KNN (with SMOTE): 0.88 / 0.21 

iii. Logistic Regression (with SMOTE): 0.97 / 0.87 

iv. Random Forest: 0.85 / 0.52 

 

Analysis 

• Logistic Regression stood out as the most effective model, achieving high accuracy and a 

balanced performance across classes. The use of SMOTE contributed to its ability to 

identify CHD-positive cases more effectively. 

• KNN, despite using SMOTE, showed a lower accuracy and recall for the positive class 

compared to Logistic Regression. This suggests that KNN might require further tuning or 

different approaches to handle imbalanced datasets effectively. 

• Decision Tree and Random Forest models exhibited reasonable overall accuracy but 

struggled significantly with the positive class. Their performance could be improved by 

further addressing class imbalance and tuning model parameters. 
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6.3. Future Scope 

To enhance the performance and address the limitations observed in this study, the following 

future directions are recommended: 

 

1) Advanced Resampling Techniques: Beyond SMOTE, other resampling methods such as 

ADASYN or Cluster-Based Over-Sampling could be explored to improve model 

performance for the minority class. Combining multiple resampling techniques may also 

provide better results. 

 

2) Feature Engineering and Selection: Improving feature selection through techniques like 

Recursive Feature Elimination (RFE) or Feature Importance Analysis can enhance model 

performance. Creating new features based on domain knowledge or interaction terms might 

also lead to better predictive power. 

 

3) Hyperparameter Tuning: Extensive hyperparameter tuning using methods like Grid Search 

or Random Search could help optimize model performance, particularly for Decision Tree 

and Random Forest models. Adjusting parameters like tree depth, number of estimators, 

and learning rate can significantly impact performance. 

 

4) Ensemble Methods: Implementing ensemble techniques such as Boosting (e.g., AdaBoost 

or Gradient Boosting) or Stacking could improve predictions by combining the strengths 

of multiple models. These methods often handle imbalanced datasets more effectively. 

 

5) Deep Learning Approaches: Exploring neural network models or deep learning techniques 

could offer significant improvements, especially for complex and large datasets. 

Techniques like Convolutional Neural Networks (CNNs) or Recurrent Neural Networks 

(RNNs) might be beneficial for feature extraction and classification. 

 

6) Cross-Validation and External Validation: Employing cross-validation techniques and 

testing models on external or unseen datasets can help assess the generalizability of the 

models. This approach will ensure that the models perform well across different data 

distributions and real-world scenarios. 

 

In conclusion, while the study demonstrated the effectiveness of SMOTE in enhancing the 

performance of KNN and Logistic Regression models, additional refinements and alternative 

methods are required to achieve balanced and robust predictions for CHD. The proposed future 

work aims to address these challenges and improve the overall predictive capability of the models. 
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